Numerical Simulation (V4E2)

Summer semester 2012
Prof. Dr. Alexey Chernov
Claudio Bierig

Problem Sheet 6

1. On the stationary diffusion problem with random coefficients (Example 5.1)

The strong formulation of the stationary diffusion problem with random coefficients reads

$$
\left\{\begin{align*}
-\operatorname{div} \alpha(x, \omega) \nabla u(x, \omega) & =f(x) & & \text { in } D \text { for almost all } \omega \in \Omega \tag{1}\\
u(x, \omega) & =0 & & \text { on } \partial D \text { for almost all } \omega \in \Omega
\end{align*}\right.
$$

If $f \in L^{2}(D)$ and there exist $\alpha_{-}, \alpha_{+} \in \mathbb{R}$ s.t. $0<\alpha_{-} \leq \alpha(x, \omega) \leq \alpha_{+}<\infty$ for all $(x, \omega) \in D \times \Omega$ there exists a unique solution and the weak formulation of (1) is:
Find $u(\cdot, \omega) \in X=H_{0}^{1}(D)$:

$$
\begin{equation*}
\int_{D} \alpha(x, \omega) \nabla u(x, \omega) \nabla v(x) d x=\int_{D} f(x) v(x) d x \quad \text { for all } v \in H_{0}^{1}(D) \tag{2}
\end{equation*}
$$

This can be rewritten as: Find $u \in X$:

$$
\begin{equation*}
\mathcal{J}(\alpha, u)=0 \tag{3}
\end{equation*}
$$

in Y^{\prime}, where $\mathcal{J}: Z \times X \rightarrow Y^{\prime}$ is defined by

$$
\begin{equation*}
\langle\mathcal{J}(\alpha, u), v\rangle=\int_{D} \alpha \nabla u \cdot \nabla v-\int_{D} f v \tag{4}
\end{equation*}
$$

for $Y=H_{0}^{1}(D), Y^{\prime}=H^{-1}(D), Z=L^{\infty}(D)$ and $U=\left\{\alpha \in Z \mid \alpha_{-} \leq \alpha(x)\right.$ in $\left.D\right\}$. Let $S: U \rightarrow X$ be the map, s.t. $\mathcal{J}(\alpha, S(\alpha))=0$ and define for some $\omega_{0} \in \Omega \alpha_{0}=$ $\alpha\left(\cdot, \omega_{0}\right)$ and $u_{0}=S\left(\alpha_{0}\right)$ the solution at this point. Let W be an open neighborhood of
$\left(\alpha_{0}, u_{0}\right)$ in $Z \times X$. The assumptions for Theorem 5.5 and Theorem 5.6 are fullfilled for this problem. We have defined in Theorem 5.5

$$
\begin{equation*}
\xi_{0}:=\left\|\Gamma_{0} \mathcal{J}_{\alpha}^{\prime}\left(\alpha_{0}, u_{0}\right)\right\|_{Z \rightarrow X} \tag{5}
\end{equation*}
$$

and η_{0} being the smallest constant satisfying

$$
\left.\begin{array}{l}
\left\|\Gamma_{0}\left\{\mathcal{J}_{\alpha}^{\prime}(\alpha, u)-\mathcal{J}_{\alpha}^{\prime}\left(\alpha_{0}, u_{0}\right)\right\}\right\|_{Z \rightarrow X} \tag{6}\\
\left\|\Gamma_{0}\left\{\mathcal{J}_{u}^{\prime}(\alpha, u)-\mathcal{J}_{u}^{\prime}\left(\alpha_{0}, u_{0}\right)\right\}\right\|_{X \rightarrow X}
\end{array}\right\} \leq \eta_{0}\left(\left\|\alpha-\alpha_{0}\right\|_{Z}+\left\|u-u_{0}\right\|_{X}\right)
$$

for all $(\alpha, u) \in W$, where $\Gamma_{0}:=\left[\mathcal{J}_{u}^{\prime}\left(\alpha_{0}, u_{0}\right)\right]^{-1}$. Furthermore Theorem 5.6 says, that S^{\prime} is Lipschitz continuous in a neighbourhood of α_{0}, i.e.

$$
\begin{equation*}
\left\|S^{\prime}(\alpha)-S^{\prime}\left(\alpha_{0}\right)\right\|_{Z \rightarrow X} \leq K\left\|\alpha-\alpha_{0}\right\|_{Z} \tag{7}
\end{equation*}
$$

for $K=4 \eta_{0}\left(1+\xi_{0}\right)^{2}$.
Prove that $\xi_{0} \leq \frac{\left|u_{0}\right|_{H^{1}}}{\alpha_{-}}$and $K \leq \frac{4}{\alpha_{-}}\left(1+\frac{\left|u_{0}\right|_{H^{1}}}{\alpha_{-}}\right)^{2}$.

2. A semilinear elliptic PDE with random right hand side

For $D \subset \mathbb{R}^{d}$ with $d \leq 3$ and $f \in L^{\infty}\left(\Omega, L^{2}(D)\right)$ we can formulate the following problem

$$
\left\{\begin{align*}
-\Delta u(x, \omega)+u(x, \omega)^{3} & =f(x, \omega) & & \text { in } D \text { for almost all } \omega \in \Omega \tag{8}\\
u(x, \omega) & =0 & & \text { on } \partial D \text { for almost all } \omega \in \Omega .
\end{align*}\right.
$$

Define the spaces X, Y and Z. Reformulate the problem in Y^{\prime} as

$$
\begin{equation*}
\mathcal{J}(f, u)=0 . \tag{9}
\end{equation*}
$$

Calculate the Frechet derivatives $\mathcal{J}_{u}^{\prime}\left(f_{0}, u_{0}\right)$ and $\mathcal{J}_{f}^{\prime}\left(f_{0}, u_{0}\right)$ for some $f_{0}=f\left(\cdot, \omega_{0}\right) \in$ Z and $u_{0}=S\left(f_{0}\right) \in X$.

Date of submission: Friday, 25 May 2012
Website: http://chernov.ins.uni-bonn.de/teaching/ss12/StochPDEs/

