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ABSTRACT. We propose a semi-Lagrangian scheme using a spatially adaptive sparse grid
to deal with non-linear time-dependent Hamilton-Jacobi Bellman equations. We focus in
particular on front propagation models in higher dimensions which are related to control
problems. We test the numerical efficiency of the method on several benchmark problems
up to space dimensiond = 8, and give evidence of convergence towards the exact viscosity
solution. In addition, we study how the complexity and precision scale with the dimension
of the problem.

1. INTRODUCTION

We are interested in solving the Hamilton-Jacobi Bellman (HJB) equation

vt + max
β(t)∈B

(f(x, β(t)) · ∇v) = 0, t > 0, x ∈ R
d,(1a)

v(0, x) = ϕ(x), x ∈ R
d(1b)

in a higher dimensional state space of dimensiond. Theaction space B, wherein the time-
dependent controlβ takes its values, is a nonempty compact subset ofR

m (m ≥ 1), and
the functionf : Rd × B → R

d, describing thestate dynamics, is assumed to be Lipschitz
continuous. This problem is closely related to the computation of the value function of
optimal control problems [2]. Note here that the HJB equation (1a) is a particular case of
the more general Hamilton-Jacobi (HJ) equationvt +H(x,∇v) = 0.

In this paper, we shall focus on the approximation of a reachable set, either coded as
Ω(t) := {x, v(t, x) ≤ 0} or defined by its front∂Ω(t). It is known from the work of Osher
and Sethian [22] that front propagation problems can be solved by using level sets and HJ
equations. Front propagation can be used for the determination of safety regions or for the
treatment of avoidance problems [20, 21], for the computation of the function describing
the minimal time to reach a set

Ω(0) := {x, ϕ(x) ≤ 0},(2)

and for optimal trajectory and feedback control law reconstruction, cf. [2, Appendix]. In-
deed, the solution of (1) is given by

v(t, x) = inf
β∈L∞([0,t],B)

ϕ(yβx (t)),(3)

whereyβx : [0, t] → R
d denotes the absolutely continuous solution of

{

ẏ(t) = −f(y(t), β(t)) for t ∈ R+ a.e.,

y(0) = x.
(4)
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HenceΩ(t) ≡
{

x ∈ R
d, ∃β ∈ L∞([0, t],B), yβx (t) ∈ Ω(0)

}

represents the set of points

from which one can reach a given targetΩ(0) in the time interval[0, t] using some control
β, whereΩ(0) is defined by the given dataϕ such that (2) holds.

Various numerical methods have been proposed to determine approximations to the vis-
cosity solution ofvt + H(x,∇v) = 0 (which includes the case of (1)). Crandall and
Lions [6] studied first order monotone finite difference schemes, which converge to the
solution. Note that monotone schemes are in general limitedto at most first order accuracy
[13]. Beyond that, higher order finite difference schemes, such as ENO schemes [23], have
also been developed. These finite difference methods work quite efficiently for Cartesian
meshes, but on unstructured meshes the schemes are more delicate [29]. Discontinuous
Galerkin (DG or RKDG) methods, originally devised to solve conservation laws, can also
be applied to HJ equations, with the flexibility for arbitrarily unstructured meshes [18].
Then, there are semi-Lagrangian (SL) schemes which are based on the discretization of the
dynamic programming principle, see e.g. [11]. They can be easily implemented on arbi-
trary meshes. Here, it is mainly required to know how to interpolate from given values on
a given mesh. A simple version of the SL scheme, which usesP1 polynomial interpolation,
is monotone and provides first order accuracy. Furthermore,higher order modifications
exist, see e.g. [5, 7, 10]. Finally, adaptive schemes for solving the HJ(B) equation have
been developed, see for instance [4, 16]. But altogether, the numerical treatment of HJ(B)
equations remains a challenging problem, in particular in higher dimensions.

In this work we employ the sparse grid method, a special discretization technique which
allows to cope with the curse of dimensionality to some extent. It is based on a hierarchical
multilevel basis [8, 27] and a sparse tensor product construction. The underlying idea was
first used for numerical integration [26]. Subsequently, the sparse grid method has been
developed for the solution of partial differential equations [14, 28]. By now, it is also
successfully used for, e.g., integral equations, stochastic differential equations, machine
learning, or interpolation and approximation, see the overview article [3] and the references
cited therein.

For the representation of a functionf defined over ad-dimensional domain, the conven-
tional sparse grid approach employsO(h−1

n · log(h−1
n )d−1) grid points in the discretization

process, wherehn := 2−n denotes the mesh width. It can be shown that the order of ap-
proximation to describe a functionf , provided that certain mixed smoothness conditions
hold, isO(h2

n · log(h−1
n )d−1). This is in contrast to conventional grid methods, which need

O(h−d
n ) for an accuracy ofO(h2

n), albeit for less stringent smoothness conditions. Thus,
the curse of dimensionality of full grid methods arises for sparse grids to a much smaller
extent. In case the smoothness conditions are not fulfilled,spatially adaptive sparse grids
have been used with good success [3, 12, 25]. There, as in any adaptive grid refinement pro-
cedure, the employed hierarchical basis functions are chosen during the actual computation
depending on the function to be represented.

In this paper we define a new semi-Lagrangian scheme on an adaptive sparse grid. We
show that, for a particular kind of HJB equations related to the front propagation model, the
number of grid points needed in higher dimensions to approximately represent the involved
functions with a given threshold error can be small. Thus, weare able to circumvent
the curse of dimensionality of standard grid approaches to some extent. There are two
important ingredients that make things work: firstly, the spatial adaptivity of the sparse
grid used in the scheme, and secondly, a particular type of boundary treatment using non-
standard basis functions. We illustrate the feasibility ofthe method numerically for a set
of front propagation examples for dimensions up tod = 8.

Note that the introduced sparse grid scheme is not monotone as the interpolation with
sparse grids is not monotone [25]. Thus neither convergencetowards the viscosity solu-
tions of (1) nor stability can presently be guaranteed, evenfor the linear advection equation.
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(a) Basis functionφ(2,1),(1,1) on gridΩ2,1 (b) Three-dimensional sparse gridΩs
5

FIGURE 1. An example of a basis functionφl,j and a sparse gridΩs
n.

To this end, further work on the new scheme is in progress. Nevertheless, our numerical
results give promising results.

This paper is organized as follows. In section 2 we describe the sparse grid structure we
use to represent the data, the boundary treatment, and the adaptive refinement and coars-
ening procedures. Our new adaptive semi-Lagrangian sparsegrid scheme is introduced
and discussed in Section 3. Section 4 contains the results for various numerical examples.
Finally we give some concluding remarks.

2. SPARSEGRIDS

For ease of presentation we will consider the domainΩ = [0, 1]d in this section. Let
l = (l1, . . . , ld) ∈ N

d denote a multi-index. We define the anisotropic gridΩl onΩ with
mesh widthhl := (hl1 , . . . , hld) := (2−l1 , . . . , 2−ld). It has, in general, different but
equidistant mesh widthshlt in each coordinate directiont, t = 1, . . . , d. The gridΩl thus
consists of the points

(5) xl,j := (xl1,j1 , . . . , xld,jd),

with xlt,jt := jt · hlt = jt · 2−lt and jt = 0, . . . , 2lt . For any gridΩl we define the
associated spaceVl of piecewised-linear functions

(6) Vl := span{φl,j | jt = 0, . . . , 2lt , t = 1, . . . , d},
which is spanned by the conventional basis ofd-dimensional piecewised-linear hat func-
tions

(7) φl,j(x) :=

d
∏

t=1

φlt,jt(xt).

The one-dimensional functionsφl,j(x) with support

[xl,j − hl, xl,j + hl] ∩ [0, 1] = [(j − 1)hl, (j + 1)hl] ∩ [0, 1]

are defined by

(8) φl,j(x) =

{

1− |x/hl − j|, x ∈ [(j − 1)hl, (j + 1)hl] ∩ [0, 1],

0, otherwise,

see Figure 1(a) for an example of a two-dimensional basis function.
The multi-indexl ∈ N

d denotes the level, i.e. the discretization resolution, be it of a grid
Ωl, of a spaceVl, or of a functionfl, whereas the multi-indexj ∈ N

d gives the position of
a grid pointxl,j or its corresponding basis functionφl,j.
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W4,1 W4,2 W4,3 W4,4

W3,1 W3,2 W3,3 W3,4

W2,1 W2,2 W2,3 W2,4

W1,1 W1,2 W1,3 W1,4

FIGURE 2. Supports of the basis functions of the hierarchical subspacesWl. All
spaces are used forV4, only the marked upper left triangle is used forV s

4 .

We now define a hierarchical difference spaceWl via

(9) Wl := Vl \
d
⊕

t=1

Vl−e
t
,

whereet is the t-th unit vector. In other words,Wl is spanned by allφk,j ∈ Vl which

are not included in any of the spacesVk smaller1 thanVl. To complete the definition, we
formally setVl := ∅, if lt = 0 for at least onet ∈ {1, . . . , d}. As can be easily seen from
(6) and (9), the definition of the index set

(10) Bl :=

{

j ∈ N
d

∣

∣

∣

∣

∣

jt = 1, . . . , 2lt − 1, jt odd, t = 1, . . . , d, if lt > 1,

jt = 0, 1, 2, t = 1, . . . , d, if lt = 1

}

leads to

(11) Wl = span{φl,j |j ∈ Bl}.
With these hierarchical difference spaces we now can define amultilevel subspace decom-
position and writeVl as a direct sum of subspaces

(12) Vl :=

l1
⊕

k1=1

· · ·
ld
⊕

kd=1

Wk =
⊕

k≤l

Wk.

Here and in the following “≤” refers to the element-wise relation for multi-indices. Fur-
thermore,|l|∞ := max1≤t≤d lt and|l|1 :=

∑d
t=1 lt are the discreteℓ∞- and the discrete

ℓ1-norm ofl, respectively.
The family of functions

(13)
{

φl,j

∣

∣j ∈ Bl

}(n,...,n)

l=(1,...,1)

is just the hierarchical basis [8, 27] ofVn(:= V(n,...,n)), which generalizes the one-dimensional
hierarchical basis, see Figure 3(a), to thed-dimensional case with a tensor product ansatz.

1We call a discrete spaceVk smaller than a spaceVl if ∀tkt ≤ lt and∃t : kt < lt. In the same way a grid
Ωk is smaller than a gridΩl.
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Observe that the supports of the basis functionsφl,j(x), which spanWl, are disjoint for
l > 1. Figure 2 gives a representation of the supports of the basisfunctions of the differ-
ence spacesWl1,l2 formingV4.

Now, each functionf ∈ Vn can be represented as

(14) f(x) =
∑

|l|∞≤n

∑

j∈Bl

αl,j · φl,j(x),

whereαl,j ∈ R are the coefficients of the representation in the hierarchical tensor product
basis. In one dimension it is easy to see that they specify what has to be added to the
hierarchical representation of levell− 1 to obtain that of levell. This generalizes to higher
dimensions accordingly and specifies what has to be added to the representation in space
⊕d

t=1 Vl−e
t

to obtain a representation inVl.
The number of basis functions which describe af ∈ Vn in nodal or hierarchical basis

is (2n + 1)d. For example, a resolution of 17 points in each dimension, i.e. n = 4, for a
ten-dimensional problem needs more than2 · 1012 coefficients, i.e. we encounter the curse
of dimensionality.

On the other hand it was observed that for a functionf with bounded second mixed
derivatives it holds

‖fl‖2 ≤ C(d) · 2−2·|l|1 · |f |H2

mix
,

wherefl :=
∑

j∈Bl
αl,j ·φl,j(x) ∈ Wl denotes its hierarchical components and|f |H2

mix
:=

‖ ∂2d

∂x2

1
...x2

d

f‖2 is theH2
mix-semi-norm, see [3, 28] for details.

Motivated by this dependence of the “importance” of the hierarchical componentsfl on
the size of the supports of the involved basis functions, i.e. | suppφl,j | = 2d · 2−l, Zenger
[28] and Griebel [14] introduced so-calledsparse grids, where hierarchical basis functions
with a small support, and therefore a small contribution to the function representation, are
not included in the discrete space of leveln anymore.

Formally, the sparse grid function spaceV s
n ⊂ Vn is defined as

(15) V s
n :=

⊕

|l|1≤n+d−1

Wl,

where in the definition (12) forVn in terms of hierarchical subspaces the condition|l|∞ ≤
n is replaced by|l|1 ≤ n + d − 1. In Figure 2 the employed subspacesWl are given in
black, the spaces omitted in comparison to (12) are given in grey.

Everyf ∈ V s
n now can be represented, analogous to (14), as

(16) f s
n(x) =

∑

|l|1≤n+d−1

∑

j∈Bl

αl,jφl,j(x).

The resulting grid which corresponds to the approximation spaceV s
n is called sparse grid

and is denoted byΩs
n, an example in three dimensions is given in Figure 1(b).

The sparse grid spaceV s
n has a size of orderdimV s

n = O(2n · nd−1), see [3]. It thus
depends on the dimensiond to a much smaller degree thanVn whose number of degrees
of freedom isO(2nd). Note that for the approximation of a functionf by a sparse grid
functionf s

n ∈ V s
n the error relation

‖f − f s
n‖2 = O

(

2−2n · nd−1
)

holds, provided thatf fulfils the smoothness requirement|f |H2

mix
< ∞ [3]. Therefore,

sparse grids need much less points in comparison to a full grid to obtain an error of the
same size.
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φ1,0 φ1,2φ1,1

φ2,1 φ2,3

φ3,1 φ3,3 φ3,5 φ3,7

(a) Hierarchical basis functionsφi,j up to level 3

φ̃1,1

φ̃2,1 φ̃2,3

φ̃3,1 φ3,3 φ3,5 φ̃3,7

(b) Modified basis functionsφi,j up to level 3

FIGURE 3. Standard and modified hierarchical basis functions.

φ2,3

x2,3 1

φ̃2,3

x2,3 1

φ̃2,3

x2,3 1

FIGURE 4. The modified hierarchical basis functioñφ2,3 stems fromφ2,3 by
folding up the half of the hat function near the boundary. It then can be straight-
forwardly extended to the outside of the domainΩ using linear extrapolation.

2.1. Modified basis functions on the boundary.Looking more closely at the number of
basis functions used for a regular sparse grid of leveln, we observe that the ratio of points
on the boundary versus that in the interior grows significantly with increasing dimension-
ality [25], i.e. more and more grid points are spent on∂Ω. When dealing with functions
that are zero or fixed on∂Ω, e.g. in case of Dirichlet boundary conditions, one could just
work without the two basis functionsφ1,0 andφ1,2 to avoid this effect. But since in our
application the function values on the boundary are not known a priori, we can not employ
this approach.

Instead, we proceed as follows: We still omit the grid pointson the boundary but addi-
tionally modify the interior basis functions so that they extrapolate towards the boundary,
as it was proposed in [25]. Figure 3(b) illustrates this modification for the case of level
n = 3, the interior basis functions nearest to the boundary are “folded up” for any level,
see also Figure 4 (mid). Thed-dimensional basis functions are again obtained as tensor
products of the one-dimensional ones in the same way as described in the previous section.
This modification can be advantageous especially in settings where the accuracy close to
the boundary is not required to be very high. In our case, thiswill correspond to the situa-
tion where the zero level is not located close to the boundary. Another advantage of these
modified basis functions is the fact that we are able to extrapolate values for points outside
of the domain, we thenlinearly extend the basis functions̃φl,i, i = 1, 2l− 1 to the exterior,
which is illustrated in Figure 4 (right). This property willlater be used for those examples
where trajectories which leave the domain need to be considered.

2.2. Spatially adaptive sparse grids.The sparse grid structure (15) defines an a priori
selection of grid points that is optimal if certain smoothness conditions are met, i.e. if the
function has bounded second mixed derivatives, and no further knowledge of the function
is known or used. If the aim is to approximate functions whicheither do not fulfil this
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smoothness condition at all or show strongly varying behaviour due to finite but neverthe-
less locally large derivatives, then adaptive refinement may be used. There, depending on
the characteristics of the problem and function at hand, adaptive refinement strategies de-
cide which points and corresponding basis functions shouldbe incrementally added to the
sparse grid representation to increase the accuracy.

In the sparse grid setting, usually an error indicator stemming directly from the hierar-
chical basis is employed [12, 15, 25]: depending on the size of the hierarchical surplusαl,j

it is decided whether a basis function should be marked for further improvement or not.
This is based on two observations: First, the hierarchical surplus gives the absolute change
in the discrete representation at pointxl,j due to the addition of the corresponding basis
functionφl,j , i.e. it measures its contribution to a given sparse grid representation (16) in
the maximum-norm. And second, a hierarchical surplus represents discrete second mixed
derivatives and hence can be interpreted as a measure of the smoothness of the considered
function at pointxl,j .

2

In the adaptive procedure we use a setI to track the indices of the employed basis
functions and denote the corresponding sparse grid byΩI and the associated sparse grid
space byVI , respectively. We start with a coarse initial sparse grid functionf s

n ∈ V s
n for

some given smalln as in (16). The index set is thus initialized asI := {(l, j) | |l|1 ≤
n+ d− 1}. We proceed as follows: If, for any given index(l, j) ∈ I, we have

|αl,j | · ‖φl,j‖ > ε(17)

for some given constantε > 0, then the index will bemarked. Here,‖ · ‖ is typically either
theL∞- or L2-norm, but other norms or weighted mixtures of norms are usedin practice
as well. If an index is marked, all its2d so-calledchildren will be added to the index setI
to refine the discretization, i.e. all(̃l, j̃) with l̃ = l+ et andj̃ = j+ jt et± 1 will be added
to I for t = 1, . . . , d. For the indices added that way it is possible that not allparents in
all dimensions are already contained in the grid; note that in such cases, for algorithmic
and consistency reasons, these missing parents have to be added toI as well. Thus for any
(l, j) ∈ I it holds that all parents(̃l, j̃) with l̃ ≤ l andsupp(φl̃,j̃)∩supp(φl,j) 6= ∅ are also

in the index setI. In other words, holes in the hierarchical structure are notallowed. The
refinement step is repeated until no indices are added anymore. In Algorithm 1 we give the
full adaptive refinement procedure. Note that if a global error criterion is available one can
perform an additional outer loop with successively decreasing ε until the measured global
error falls below a given thresholdεglob.

In a similar way one can use the value|αl,j | · ‖φl,j‖ to coarsen the grid in case of
over-refinement. If this value is smaller than some coarsening constantη, and no children
of (l, j) are inI, the index will be removed from this set. In Algorithm 2 we give the
coarsening step, where the procedure is repeated until no indices are being removed. The
coarsening will in particular be relevant once we consider time-dependent problems where
the region in need of a higher resolution moves over the domain. This will be described
more precisely in Section 3.

3. SEMI-LAGRANGIAN SCHEME

We will now use adaptive sparse grids in a new semi-Lagrangian scheme for Hamilton-
Jacobi Bellman equations. Here, we focus on the equation

vt(t, x) + max
β(t)∈B

(f(x, β(t)) · ∇v(t, x)) = 0, t ≥ 0, x ∈ Ω,(18a)

v(0, x) = ϕ(x), x ∈ Ω.(18b)

The state dynamics functionf is assumed to be Lipschitz continuous. We are interested
in the zero level set ofv(t, ·). The regionΩ(t) := {x | v(t, x) ≤ 0} is also called the

2Here, also many other approaches exist, which are based on interpolets, prewavelets or wavelets, cf. [12].
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Algorithm 1: Spatially Adaptive Refinement
Data: initial index setI, refinement thresholdε and function evaluationF
Result: refined index setI, adaptive sparse grid approximation ofF in VI

for all indices (l, j) ∈ I do
computeF (xl,j) ⊲ evaluate F at initial grid points

compute hierarchical valuesαl,j for all indices, see e.g. [15]

while indices are added to I do
for (l, j) ∈ I do ⊲ look at all indices

if |αl,j | · ‖φl,j‖ > ε then
for t = 1, . . . , d do ⊲ hierarchical surplus is large

if (̃l, j̃) /∈ I for l̃ = l+ et and j̃ ∈ {j + jt et ± 1} then
I = I ∪ (̃l, j̃) ⊲ add children which are not in I

check∀(l, j) ∈ I holds: (̃l, j̃) ∈ I for l̃ ≤ l andsupp(φl̃,j̃) ∩ supp(φl,j) 6= ∅
for all added indices (l, j) ∈ I do

computeF (xl,j) ⊲ evaluate F at new grid points

compute hierarchical valuesαl,j for newly added indices, see e.g. [15]

Algorithm 2: Spatially Adaptive Coarsening

Data: index setI, coarsening thresholdη, andαl,j ∀(l, j) ∈ I
Result: coarsened index setI
while indices are removed from I do

for (l, j) ∈ I do ⊲ look at all indices
if |αl,j | · ‖φl,j‖ < η then ⊲ hierarchical surplus is small

if ∀t = 1, . . . , d: (̃l, j̃) /∈ I for l̃ = l + et and j̃ ∈ {j + jt et ± 1} then
I = I\(l, j) ⊲ remove if no children in I

(backward) “reachable set”. As mentioned in the introduction, it corresponds to the set
of points that can be reached at timet ≥ 0 by some trajectory that starts fromΩ(0) :=
{x |ϕ(x) ≤ 0}, see [22].

In the following we will introduce a semi-Lagrangian (SL) scheme for the numerical
treatment of (18). It is inspired by the dynamic programmingprinciple, which is here:

v(t+ τ, x) = min
β∈L∞([0,τ ];B)

v
(

t, yβx(−τ)
)

∀τ ≥ 0.(19)

Together withv(0, x) = ϕ(x) this is equivalent to equation (18), see [2]. Here,yβx denotes
the absolutely continuous solution of the corresponding state dynamics system (4). Hence
yβx(−τ) in (19) is a solution of (4) backwards in time, it gives the point from whichx is
reached under controlβ in the time interval[t, t+ τ).

For the discretization of the time interval[0, T ], let K be the number of time steps, let
τ := T/K be the time step and settk := kτ, k ∈ {0, · · · ,K − 1}. Note that from now
on we will only consider controls that are constant during a time step, i.e.β(t) ≡ bk, t ∈
[tk, tk + τ ], and we will denote the corresponding trajectory asybkx (−τ). Furthermore, the
computation ofybkx (−τ) can be done in an approximate way without changing the core of
the scheme, by e.g. using some high order Runge Kutta method.In the numerical examples
of Section 4, there will be no need for such approximations since the consideredybkx (−τ)
can be calculated analytically.
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Let us for now consider a suitably chosen sparse gridΩI . The semi-Lagrangian (SL)
scheme to solve (18) in the time interval[0, T ] onΩI then takes the following form:

• Initialize v0 ∈ VI by interpolatingϕ.
• Iterate fork = 0, . . . ,K − 1,

(20) vk+1(x) := min
bk∈B

vk

(

ybkx (−τ)
)

∀x ∈ ΩI .

Here,vk ∈ VI is the numerical solution computed by the scheme at timetk and the value

vk

(

ybkx (−τ)
)

denotes the sparse grid interpolation ofvk at pointybkx (−τ). In general,

depending on the initial function and the state dynamics, a specific treatment of the case
ybkx (−τ) /∈ Ω is necessary; for our approach we will give details in the numerical section.
Moreover note that for our experiments in Section 4 the minimization over the setB can
be done in a straightforward way by evaluating the function values for each possible action
bk ∈ B. In case this number is too large, or if the setB is infinite, then a minimisation
procedure which uses only evaluations of the objective function, and not its derivatives,
could be performed without changing the main steps of the SL-SG scheme. We refer for
instance to [4], where this approach was successfully employed for a semi-Lagrangian
scheme using Brent’s minimization algorithm.

3.1. Spatially adaptive semi-Lagrangian sparse grid scheme.With an SL scheme us-
ing spatially adaptive sparse grids (SL-SG scheme), the employed selection of grid points
needs to be changed from time steptk to tk+1 for a fully efficient scheme to achieve the
smallest grid for a given accuracy at each time step, i.e. foreachk there is a corresponding
adaptive sparse gridΩI(k), defined by the index setI(k), with an approximate solution
vk ∈ VI(k). To this end, we first discretize in time and then in space, this approach is often
called Rothe-method.

To compute the approximate solutionvk+1 for the next time steptk+1 the new index set
I(k+1) is initialized byI(k). For this index set the effect of the actions is then evaluated
and the approximation at timetk+1 is computed forI(k + 1) as

vk+1(xl,j) := min
bk∈B

vk

(

ybkxl,j
(−τ)

)

∀(l, j) ∈ I(k + 1).

With that, one can compute the hierarchical surplusαl,j for all (l, j) ∈ I(k + 1), mark
those indices with coefficients which are larger than the refinement constantε, add the cor-
responding child indices toI(k + 1) and repeat. In other words, we apply Algorithm 1

where the function evaluationF (x) is min
bk∈B

vk

(

ybkx (−τ)
)

. After the new sparse grid

ΩI(k+1) is sufficiently refined we apply Algorithm 2 to remove the superfluous indices
up to some minimal level. This coarsening not only concerns children added newly in the
refinement step which are not needed in the end, but is in particular relevant to take the
movement of the region of interest in time into account, which corresponds to the state
dynamics. In other words, the higher resolved area of the state space changes in time. The
full spatially adaptive semi-Lagrangian Sparse Grid scheme is given in Algorithm 3.

3.2. Non-smooth initial data. We now explain how the scheme can be generalized to the
case of non-smooth initial data of the form

ϕ(x) := min
i=1,...,J

(ai + ϕi(x)),(21)

whereJ ≥ 1, ai ∈ R and whereϕi : R
d → R are some given functions. Each function

ϕi will be assumed to be sufficiently smooth to allow for the efficient application of the
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Algorithm 3: Adaptive SL-SG scheme
Data: suitable initial index setI, refinement constantε and coarsening constantη
Result: sequence of adaptive sparse grid solutionsvk ∈ VI(k) for k = 0, ...,K

call Alg. 1 with I, ε andF (x) = ϕ(x) ⊲ interpolate ϕ by v0 ∈ VI(0)

call Alg. 2 with I(0), η andv0 ⊲ coarsen v0
for k = 0, . . . ,K − 1 do ⊲ iterate in time

call Alg. 1 with I(k), ε andF (x) = min
bk∈B

vk(y
bk
x (−τ)) ⊲ compute

vk+1 ∈ VI(k+1) call Alg. 2 with I(k + 1), η andvk+1 ⊲ coarsen vk+1

SL-SG scheme to the following subproblems fori = 1, . . . , J :

v
(i)
t (t, x) + max

β(t)∈B

(

f(x, β(t)) · ∇v(i)(t, x)
)

= 0, t ∈ (0, T ), x ∈ Ω,(22a)

v(i)(0, x) = ϕi(x), x ∈ Ω.(22b)

Note that by using the equivalent formula (3) for initial data of the form (21), the solu-
tion of (18) is also given as

v(t, x) = min
i=1,...,J

(

ai + v(i)(t, x)
)

.

Here eachv(i) is the solution of the subproblem (22) associated toϕi.
Indeed, it is well known (see [19], the ”max-plus approach” of [1], and the references

therein) that for a convex Hamiltonian

H(x, p) := max
b∈B

(

f(x, b) · p
)

the solutionv(t, ·) of vt +H(x,∇v) = 0 with initial datav(0, ·) = ϕ(·) has a ”min-plus”
property: For anyϕ decomposed in the form (21) we havev(t, x) = mini(ai+(Stϕi)(x)),
whereSt denotes the semigroup associatingϕ to its corresponding solutionv(t, ·) = Stϕ.
Therefore, we can apply an adaptive SL-SG scheme to each initial dataϕi from (21), where
values and grid points are adapted with respect toϕi. In order to obtain the value of
v(T, x) at the final computational timeT and for a given pointx, we minimize theJ values
ai + v(i)(T, x) by using the corresponding sparse grid representation of each v(i)(T, ·)
which we computed separately up to timeT . Hence this scheme needsJ sparse grid
functions. However the computation of thev(i) can be done independently and therefore
completely in parallel. This generalized scheme will be applied to the example 5 in the
following section.

4. NUMERICAL RESULTS

We have tested the adaptive sparse grid procedure from Algorithm 3 on various nu-
merical examples. We shall show two types of results. The first one concerns numerical
convergence, and the second one deals with the scaling behaviour of the proposed scheme
with respect to the dimensiond ≥ 2.

In our tests we only compute theL∞- andL2-error against the known exact solutionv
localized around the zero level set. This localization takes place for two reasons. First, the
region around the zero level set is the important one for our applications, and second and
more importantly, we can thus reduce the computational effort for the error calculation in
higher dimensions. To this end, we define the region

Qt
c(v) = {x | |v(t, x)| ≤ c}

around the zero level set of the exact solutionv at timet, wherec > 0 is a given threshold.
In general one would defineQt

c(v) such that|v(t, x)|/‖∇v(t, x)‖ ≤ c, but since in our
examples we will have‖∇v‖ ∼ 1 near the zero level set we simplify the criterion and use
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only |v(t, x)| ≤ c. We now can localize any functionu, in particular the exact solutionv
and its numerical approximationvk, by setting the function to zero outside ofQt

c(v), i.e.

(23) uloc(x) :=

{

u(x), if x ∈ Qt
c(v),

0, if x /∈ Qt
c(v).

To simplify the presentation we do not indicate the dependence of uloc on Qt
c(v) since

Qt
c(v) straightforwardly follows from the context for any employed uloc. Now we can

define the relative localizedL∞-error at timetk by

‖vloc(tk, ·)− vk,loc(·)‖L∞

‖vloc(tk, ·)‖L∞

.

To this end, letv(tk, ·) denote the exact solution at timetk, whereasvk(·) denotes the
sparse grid approximation function at timetk. Their localized counterpartsvloc andvk,loc
are then defined by (23) usingQtk

c (v). The discrete localL∞-error at timetk is now further
approximated using an equidistant tensor gridG covering the whole domain, i.e.

(24) eL∞

loc
=

max
x∈G

|vloc(tk, x)− vk,loc(x)|

c
,

where‖vloc(tk, ·)‖L∞ = c.
The relative localL2-error is defined in a similar fashion by

(25) eL2

loc
=

(

∑

x∈G

|vloc(tk, x)− vk,loc(x)|2
)1/2

(

∑

x∈G

|vloc(tk, x)|2
)1/2

.

For the computation of these localized relative errors onlypointsx ∈ G ∩ Qt
c(v) are now

relevant due to the localization. In our examples we useNx = 70 points in each direction
for the gridG andc = 0.2. Note that in higher dimensions the error computation using
the gridG will still dominate the computational time, even in the localized form. Let us
remark that we observe with a relative localL∞ error of roughly10−2 already a quite good
localization of a front in our numerical experiments.

To analyze the rate of convergence of the adaptive sparse grid scheme with respect to
- for instance - the refinement constantε, we compute the quantity

̺εj ,ej :=
log(ej/ej−1)

log(εj/εj−1)
,

whereej is the error corresponding to the refinement constantεj , see Section 2.2. Here,
j enumerates the sequence of refinement constants used and it will later correspond to the
rows in the tables of the numerical results. The order of the cost complexity̺Nj ,ej is
defined analogously, whereNj is the number of sparse grid points in the adaptive sparse
grid which results from the refinement constantεj .

In the following, we first test our new adaptive SL-SG scheme on two linear examples
and discuss its properties. This corresponds to the particular case of the control setB in
(1) consisting of just one element. Then, we apply it to more involved nonlinear HJB
equations.

In all examples we start with a sparse grid of level 3, which isalso the minimal level
for the coarsening procedure. Moreover, we always employ the modified basis functions
of Figure 3(b) from section 2.1 in our sparse grid algorithms. The coarsening constantη
corresponding to a givenε is set toη = ε/5 in all of the following examples. As norm in
the refinement condition (17) we always use‖.‖∞.
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t = 0

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

8.00−3 133 9.73−3 1.15−2

2.00−3 261 2.44−3 1.00 −2.05 2.99−3 0.97 −2.00
5.00−4 517 6.08−4 1.00 −2.03 7.50−4 1.00 −2.02
1.25−4 1,029 1.52−4 1.00 −2.01 1.86−4 1.01 −2.03
3.13−5 2,053 3.81−5 1.00 −2.00 4.67−5 1.00 −2.00
7.81−6 4,101 9.53−6 1.00 −2.00 1.16−5 1.00 −2.01
1.95−6 8,197 2.38−6 1.00 −2.00 2.88−6 1.01 −2.02

4.88−7 16,389 5.88−7 1.01 −2.02 6.76−7 1.05 −2.09

t = 1

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

8.00−3 105 1.14−1 1.92−1

2.00−3 201 2.85−2 1.00 −2.14 4.79−2 1.00 −2.14
5.00−4 393 7.12−3 1.00 −2.07 1.20−2 1.00 −2.07
1.25−4 777 1.78−3 1.00 −2.03 2.99−3 1.00 −2.04
3.13−5 1,547 4.45−4 1.00 −2.01 7.48−4 1.00 −2.01
7.81−6 3,081 1.11−4 1.00 −2.01 1.87−4 1.00 −2.01
1.95−6 6,155 2.78−5 1.00 −2.00 4.68−5 1.00 −2.00
4.88−7 12,297 6.95−6 1.00 −2.00 1.17−5 1.00 −2.00

TABLE 1. Example 1, convergence ford = 2, initial data (t = 0) and terminal
data (t = 1), afterK = 12 time steps.

Concerning the boundary treatment, we consider three different types of examples. At
first there are problems where the trajectory is known to stayinside the domain, hence there
is no need for a specific treatment for the boundary (Ex.2 and3). For the second type,
we know that there is always at least one trajectory staying insideΩ and those leaving the
domain can be safely ignored (Ex.5). If this is not the case, i.e. if possibly all trajectories
end up outside ofΩ, we utilise the fact that our modified basis functions enableus to
extrapolate function values even outside of the domain (see2.1), and use the extrapolated
values for the scheme if necessary (Ex.1 and4).

Example 1.We consider the following advection equation:

vt + f · ∇v = 0, t ≥ 0, x ∈ Ω,

v(0, x) = ϕ(x), x ∈ Ω,

whereΩ = (−2, 2)d, f ≡ f(x) = (−1, . . . ,−1) and

ϕ(x) := ‖x− a‖22 − r20 , with r0 = 0.5.

The vectora is defined by the firstd coordinates of the sequence
(

1
2 ,

1
3 ,

1
5 ,

1
7 ,

1
11 ,

1
13

)

, there-
forea does not correspond to a sparse grid point. The level set{x |ϕ(x) = 0} represents a
sphere inRd of radiusr0 centered ata. This system describes the movement of the initial
functionϕ, and hence its zero level set, in directionf . The exact solution for this advection
equation is given byv(t, x) = ϕ(x − ft).

We start with a convergence analysis for dimensions two and four. In Table 1 we first
consider the two-dimensional case. For different refinement constantsε we give fort = 0
(initial data) and fort = 1 (terminal time) the numberN of resulting sparse grid points, i.e.
N = |I(t)|, and the local errorseL∞

loc
andeL2

loc
which were obtained.

We observe that̺ε,e ∼ 1, hence the computed errorseL∞

loc
andeL2

loc
depend linearly

on the parameterε of the adaptive refinement procedure. We therefore can reduce the
error in a controlled fashion by correspondingly reducing the parameterε in the refinement
procedure. Moreover, we approximately have̺N,e ∼ −2, hence the computed errors are
of second order with respect to the total number of sparse grid pointsN .
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t = 0

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

8.00−3 281 1.95−2 2.28−2

2.00−3 537 4.88−3 1.00 −2.14 5.73−3 1.00 −2.13
5.00−4 1,049 1.20−3 1.01 −2.09 1.42−3 1.01 −2.09
1.25−4 2,073 3.05−4 0.99 −2.01 3.61−4 0.99 −2.01
3.13−5 4,121 7.62−5 1.00 −2.02 9.00−5 1.00 −2.02
7.81−6 8,217 1.91−5 1.00 −2.01 2.23−5 1.01 −2.02
1.95−6 16,409 4.76−6 1.00 −2.00 5.39−6 1.02 −2.05

4.88−7 32,793 1.01−6 1.12 −2.24 1.10−6 1.15 −2.30

t = 1

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

8.00−3 225 2.28−1 3.84−1

2.00−3 417 5.69−2 1.00 −2.25 9.59−2 1.00 −2.25
5.00−4 801 1.42−2 1.00 −2.12 2.40−2 1.00 −2.12
1.25−4 1,569 3.56−3 1.00 −2.06 5.99−3 1.00 −2.06
3.13−5 3,109 8.90−4 1.00 −2.03 1.50−3 1.00 −2.03
7.81−6 6,177 2.22−4 1.00 −2.02 3.75−4 1.00 −2.02
1.95−6 12,325 5.54−5 1.00 −2.01 9.39−5 1.00 −2.00
4.88−7 24,609 1.39−5 1.00 −2.00 2.37−5 0.99 −1.99

TABLE 2. Example 1, convergence ford = 4, initial data (t = 0) and terminal
data (t = 1), afterK = 12 time steps.

To summarize, for both types of errors we observe the behaviour

eL∞

loc
, eL2

loc
∼ Cd · ε and eL∞

loc
, eL2

loc
∼ C′

d ·N−2,(27)

with Cd, C′
d constants independent ofε andN , respectively, but dependent on the dimen-

sion of the problem. This holds for botht = 0 andt = 1.
We observe the same type of behaviour for the3-dimensional case (not shown here),

as well as for the4-dimensional case, see Table 2. Thus, (27) holds independent of the
dimension. This is due to the specific structure of the initial data and the solution which is
resolved by the adaptivity of our approach. All employed sparse grid points are on one of
the coordinate axes, see Figure 5, therefore the adaptive sparse grid is just the superposition
of d one-dimensional grids which explains (27) for all dimensions.

Moreover, we observe here that the number of sparse grid points for the terminal data
(t = 1) is smaller than that for the initial data. This is at least inparts due to the evaluation
outside of the domain in direction of the flowf in (20). There, instead of the exact solution
v one needs to employ the discretizedvk, resulting in incoming data which is more easily
representable by an adaptive sparse grid. We will not observe such a decrease of the number
of necessary points in the general case, though.

Next, we consider the dependence of the complexity on the dimensiond of the problem
for a fixed thresholdε. The obtained results are presented in Table 3. We can observe
that for timet = 1, the numberN of points scales linearly with the dimensiond of the
problem, i.e.N ∼ d. This almost perfect scaling can again be explained by the mentioned
approximately additive structure of the solution which is detected by our adaptive sparse
grid algorithm and which results in a pure axis-structure ofthe corresponding adaptive
grid. Also the errors increase only slowly with the numberd of dimensions by a factor of
roughlyd/d − 1 per additional dimension, in other words, linearly ind. This shows that
our adaptive procedure has very good scaling properties with respect to the dimension in
simple cases.

Note here that the main bottleneck in runtime for higher dimensions is the error compu-
tation on the full grid and not the semi-Lagrangian sparse grid scheme itself. The method
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(a) initial grid (b) initial function with zero level set

(c) resulting grid (d) resulting function with zero level
set

FIGURE 5. Example 1 ford = 2 andε = 5 · 10−4.

t = 0 t = 1

d N eL∞

loc
eL2

loc

N(d)
N(d−1)

2 517 6.08−4 7.50−4

3 781 9.05−4 1.09−3 1.51
4 1,049 1.20−3 1.42−3 1.34
5 1,321 1.49−3 1.70−3 1.26
6 1,597 1.77−3 1.95−3 1.21

d N eL∞

loc
eL2

loc

N(d)
N(d−1)

2 393 7.12−3 1.20−2

3 595 1.07−2 1.83−2 1.51
4 801 1.42−2 2.40−2 1.35
5 1,011 1.78−2 2.91−2 1.26
6 1,255 2.14−2 3.37−2 1.24

TABLE 3. Example 1, scaling behaviour (2 ≤ d ≤ 6) for initial data (t = 0)
and terminal data (t = 1), afterK = 12 time steps, usingε = 5 · 10−4 for the
adaptive procedure.

alone could actually be run in many more dimensions since itscosts for thed-dimensional
case involves only aboutd times the cost of the one dimensional case for this special test
problem.

Remark 4.1. Notice that a spatially adaptive sparse grid representation of a functionf1(x1)
that does not depend on the other variablesx2, . . . , xd will have points located only on the
x1 axis. Similarly, a function of the formf1(x1) + · · · + fd(xd) will have a spatially
adaptive sparse grid representation located only on thed principal axis. This explains the
behavior in Figure 5, as well as for some initial data that will be used in Example 4 and 5
(see Figures 8 and 9, resp.).

Example 2.Next, we consider the following transport equation

vt + f(x) · ∇v = 0, t ≥ 0, x ∈ Ω,

v(0, x) = ϕ(x), x ∈ Ω,

whereΩ = (−2, 2)d andt = 0.5. In comparison to the first example the velocity fieldf(x)
is nowx-dependent and thus the solution has no longer an approximately additive structure.
We will assume that−f is an inward pointing flow, i.e.(−f(x))·ν ≤ 0, ∀x ∈ ∂Ω, whereν
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(a) resulting grid (b) resulting function with zero level
set (green line)

(c) resulting grid (d) resulting zero level set

FIGURE 6. Example 2 ford = 2 andd = 3, ε = 5 · 10−4.

is the outward normal on∂Ω, such that the backward characteristics of the flow stay inside
the domainΩ.3 Moreover, we choose the state dynamics as

f(x) = a(‖x‖) f1(x),

wherea(r) :=
(

max
(

1− r

1.5
, 0
))3

is a scalar function, andf1(x) is a vector field cor-

responding to a rotation ofRd, which is made precise in appendix A. The initial function
is taken asϕ(x) = x2. Since the characteristicsyx(−t) can be computed analytically (see
appendix), the exact solution is known. It is given by

v(t, x) = ϕ
(

yx(−t)
)

.

For the numerical scheme, we also use the analytical formulafor yx(−τ) whereτ is the
time step.

Note that the initial functionϕ(x) = x2 can be represented exactly by a sparse grid.
In Tables 4 and 5, we give the convergence results for dimension d = 2 and d = 3,
respectively, observed at the terminal timet = 0.5. Again, we roughly obtain̺ ε,e ∼ 1.
Thus, also for this non-smooth function we have a control of the final error by a suitable
adjustment of the refinement parameterε. However, the number of grid points which are
employed for a given refinement threshold is now much larger and the order with respect
toN is worse than for the first example. This is due to the higher variability of the function
(see Figure 6) which also exhibits larger second mixed derivatives. In higher dimensions
this effect grows, the factorN(d)

N(d−1) is about 5. We therefore need more and more grid
points, but we are still able to achieve reasonable accuracies. In particular we observe no
exponential scaling of the complexity with respect tod.

3Sinceyx(−t) stays inΩ for all x ∈ Ω the boundary needs no specific consideration and for this example
we could use the standard hat basis of Figure 3(a) as well. Indeed we numerically observed the same accuracy
with roughly the same number of points for the standard and modified basis of Figure 3, respectively.



16 OLIVIER BOKANOWSKI, JOCHEN GARCKE, MICHAEL GRIEBEL, ANDIRENE KLOMPMAKER

t = 0.5

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

8.00−3 281 2.44−1 1.77−1

4.00−3 539 1.33−1 0.88 −0.93 9.61−2 0.88 −0.94
2.00−3 919 5.86−2 1.18 −1.54 4.09−2 1.23 −1.60
1.00−3 1,409 3.20−2 0.87 −1.41 1.98−2 1.04 −1.69
5.00−4 2,361 1.49−2 1.10 −1.48 9.90−3 1.00 −1.35
2.50−4 3,683 6.03−3 1.31 −2.04 4.41−3 1.17 −1.82
1.25−4 5,603 3.20−3 0.92 −1.51 2.38−3 0.89 −1.47

6.25−5 8,531 1.69−3 0.92 −1.52 1.28−3 0.89 −1.47

TABLE 4. Example 2, convergence ford = 2, terminal data (t = 0.5), after
K = 10 time steps.

t = 0.5

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

8.00−3 1,297 3.75−1 1.15−1

4.00−3 2,507 2.26−1 0.73 −0.76 6.09−2 0.92 −0.97
2.00−3 4,771 1.43−1 0.67 −0.72 3.53−2 0.79 −0.85
1.00−3 8,451 7.01−2 1.03 −1.24 1.79−2 0.98 −1.18
5.00−4 15,153 3.16−2 1.15 −1.36 9.74−3 0.88 −1.04
2.50−4 25,213 1.63−2 0.96 −1.31 5.27−3 0.89 −1.21
1.25−4 42,553 7.37−3 1.14 −1.51 2.98−3 0.82 −1.09
6.25−5 72,267 4.06−3 0.86 −1.12 1.71−3 0.80 −1.05

TABLE 5. Example 2, convergence ford = 3, terminal data (t = 0.5), after
K = 10 time steps.

t = 0.5

d N eL∞

loc
eL2

loc

N(d)
N(d−1)

2 2,361 1.49−2 9.90−3

3 15,153 3.16−2 9.74−3 6.42
4 83,741 6.36−2 7.72−3 5.53
5 431,823 1.10−1 7.84−3 5.16

TABLE 6. Example 2, scaling behaviour (2 ≤ d ≤ 5) for terminal data (t =
0.5), afterK = 10 time steps, usingε = 5 · 10−4 for the adaptive procedure.

Example 3.Now, we consider a nonlinear PDE example, the Eikonal equation

vt + ‖∇v‖ = 0, t ≥ 0, x ∈ Ω,

v(0, x) = ϕ(x), x ∈ Ω,

in Ω = (−2, 2)d. Note that this is a particular case of (1), since withf(x, b) = b for
b ∈ B := B(0, 1), i.e. the unit ball, we havemaxb∈B(0,1)(−f(x, b) · ∇v) = ‖∇v‖.

To obtain an exact solution to compare with, we consider the caseϕ(x) := q(‖x‖)
whereq : R+ → R is a non-decreasing function. Then, we can show that4

(30) v(t, x) = q((‖x‖ − t)+).

Here, we use

q(z) :=
1

2r0
(z2 − r20)

4With St(x) := {x ∈ Rd | ‖x‖2 ≤ t} = B(x, t) we can show thatv(t, x) = infy∈St(x) ϕ(y) = ϕ(x∗)

wherex∗ is a point ofRd such thatx∗ := argminy∈St(x) ‖y‖.
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(a) resulting grid (b) resulting function with zero level
set

FIGURE 7. Example 3 ford = 2, ε = 2 · 10−3.

t = 1

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

8.00−3 261 1.27−1 1.30−1

2.00−3 705 3.41−2 0.95 −1.32 3.24−2 1.00 −1.40
5.00−4 1,889 1.12−2 0.80 −1.13 1.02−2 0.83 −1.17
1.25−4 4,745 2.93−3 0.97 −1.46 2.99−3 0.88 −1.33
3.13−5 11,153 8.75−4 0.87 −1.41 7.83−4 0.97 −1.57
7.81−6 25,477 2.19−4 1.00 −1.68 2.14−4 0.93 −1.57
1.95−6 57,641 6.24−5 0.90 −1.54 6.30−5 0.88 −1.50
4.88−7 130,193 1.63−5 0.97 −1.65 1.70−5 0.94 −1.61

TABLE 7. Example 3, convergence ford = 2, terminal data (t = 1), after
K = 10 time steps.

t = 0 t = 1

d N eL∞

loc
eL2

loc

N(d)
N(d−1)

2 261 2.44−3 2.92−3

3 397 3.66−3 4.45−3 1.52
4 537 4.88−3 5.81−3 1.35
5 681 6.10−3 6.98−3 1.27

d N eL∞

loc
eL2

loc

N(d)
N(d−1)

2 705 3.41−2 3.24−2

3 4,525 5.36−2 3.95−2 6.42
4 28,281 6.63−2 4.73−2 6.25
5 246,665 7.62−2 4.48−2 8.72

TABLE 8. Example 3, scaling behaviour (2 ≤ d ≤ 5) for initial data (t = 0)
and terminal data (t = 1) afterK = 10 time steps, usingε = 2 · 10−3 for the
adaptive procedure.

with r0 = 0.5, i.e. q is chosen such thatq(z) = 0 for z = r0 andq′(r0) = 1. Hence, the
zero level set{x |ϕ(x) = 0} represents just the sphere of radiusr0.

In the numerical scheme we now employ the known optimal pathyx(−τ) = x − τ x
‖x‖

if ‖x‖ ≥ τ , andyx(−τ) = 0 otherwise. Thus, no error can come from a discretization of
the continuous control and only interpolation errors from the SL scheme can occur.

Since we have the same initial function as in the first example, just moved to the center,
we only give figures and results fort = 1 here. We observe a similar order̺ε,e ∼ 1 for
d = 2 with respect toε but we now need more grid points, i.e. we obtain̺N,e ∼ −3/2,
see Table 7. The resulting grid and function fort = 1 are shown in Figure 7. Obviously,
the solution at timet = 1 cannot be represented by an adaptive grid with points only on
the axes like in Example 1. We now need to resolve the transition of the function from a
flat region inside the zero level set to a steeper one outside.Furthermore, we have a non-
smooth function due to the(·)+ in (30). This behaviour can however be handled well by
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our adaptive discretization approach. Note in particular the sparse grid effect away from
the area of non-smoothness in Figure 7.

The scaling behaviour is shown in Table 8. Although we now usea different value forε,
we observe fort = 0 the same factorsN(d)/N(d − 1) as in Table 3 for the first example,
where the same initial function was used. The scaling behaviour for t = 1 starts similar as
in Example 2, but gets somewhat worse with risingd, which clearly shows that it depends
on the function to be represented. But, again, we do not observe an exponential scaling
with raising number of dimensions.

Example 4. In this example we consider the HJB equation

vt +max
b∈B

(

∑

i

biPi · ∇v

)

= 0, t ≥ 0, x ∈ Ω,(31a)

v(0, x) = ϕ(P−1x), x ∈ Ω.(31b)

whered ≥ 2, Ω = (−2, 2)d, andB := {b = (b1, . . . , bd), bi = ±1} is a set of2d column
vectors, hence we have2d possible controls, andPj denotes thej-th column vector of a
given matrixP ∈ R

d×d. The definition ofP and more details are given in appendix B. For
the initial function, we consider radially symmetric dataϕ(x) := q(‖x‖) as in Example3.
Hence, due toP 2 = Id andv(0, x) ≡ ϕ(Px), the zero level set att = 0 is an ellipse in the
first two dimensions, see Figure 8(a). The exact solution is given by

(32) v(t, x) ≡ ϕ ((Px)∗t ) ,

see the appendix for details. Thus, the zero level set at timet = 0.5 describes a par-
allelogram with rounded edges in the first two dimensions, see Figure 8(d), whereas, in
the other dimensions, it forms a rectangle with rounded edges. Note that we specifically
designed this example to show the advantage of our adaptive sparse grid approach in sit-
uations where the function needs higher refinement in some dimensions and only small
refinement in other dimensions.

For the numerical scheme we need to consider the explicit paths

ybx(−τ) = x− τ(
∑

i

biPi) ≡ x− τPb

for all b ∈ B. Here, the first two components ofPb take the four possible values±(1,−2),
±(1, 0), and the otherd − 2 values are given by(±1, . . . ,±1). Let us emphasize that
we now have to use an explicit minimization over all possibletrajectoriesybx(−τ) for the
different actionsPb.

Since we are in a non-linear control setting, we have to reconsider the choice of the time
stepτ , which now needs to depend onε. It is known from the approximation properties of
regular grids that the error between the continuous solution and its discrete approximation
depends on the time stepτ and the spatial errorεh in a mixed relation likeO(τ + εh/τ),
see [2, 9, 24]. In our adaptive sparse grid setting we do not have a mesh sizeh relating to the
discretization errorεh. Instead, we have a refinement constantε which controls the error
of our approximation. Therefore, to balanceε andτ accordingly, we choose hereτ = c

√
ε,

with constantc = 1 in our case. This gives an overall error ofO(
√
ε+ ε/

√
ε) = O(

√
ε).

A more detailed investigation of the relation between the error of the adaptive sparse grid
discretization and the time step size is warranted, but beyond the scope of this paper.

In Figure 8 we show the initial and resulting grids as well as the level set ofv for t = 0
andt = 0.5 for the two-dimensional case, and also the grids for the three-dimensional case.
As can be seen in Figure 8(f) the resulting grid is essentially two-dimensional, since the
rectangle-structure in the other dimensions can be represented by an adaptive grid which
only has points on the axis in these coordinates. We also observe that a more diagonal
structure of the function is disadvantageous for a sparse grid, since one needs a substantial
number of points to represent such a diagonal formation by a locally refined sparse grid.



AN ADAPTIVE SPARSE GRID SEMI-LAGRANGIAN SCHEME FOR HJB EQUATIONS 19

t = 0

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

2.00−3 263 3.66−3 4.42−3

5.00−4 519 9.03−4 1.01 −2.06 1.10−3 1.01 −2.05
1.25−4 1,031 2.29−4 0.99 −2.00 2.75−4 1.00 −2.01
3.13−5 2,055 5.72−5 1.00 −2.01 6.84−5 1.00 −2.02
7.81−6 4,101 1.43−5 1.00 −2.01 1.70−5 1.01 −2.02
1.95−6 8,199 3.57−6 1.00 −2.00 4.16−6 1.01 −2.03

t = 0.5

ε K N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

2.00−3 12 1,415 2.64−1 2.31−1

5.00−4 23 3,217 1.65−1 0.34 −0.57 1.36−1 0.38 −0.64
1.25−4 45 7,529 9.10−2 0.43 −0.70 7.46−2 0.44 −0.71
3.13−5 90 16,675 4.82−2 0.46 −0.80 3.89−2 0.47 −0.82
7.81−6 179 36,967 2.53−2 0.47 −0.81 2.01−2 0.48 −0.83
1.95−6 358 80,537 1.28−2 0.49 −0.87 1.02−2 0.49 −0.87

TABLE 9. Example 4, convergence ford = 2 for initial data (t = 0) and
terminal data (t = 0.5) with K = t

τ
for varying time step sizeτ =

√
ε.

t = 0

ε N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

2.00−3 399 4.88−3 5.95−3

5.00−4 783 1.19−3 1.02 −2.10 1.45−3 1.02 −2.09
1.25−4 1,551 3.05−4 0.98 −1.99 3.70−4 0.99 −2.00
3.13−5 3,087 7.62−5 1.00 −2.01 9.24−5 1.00 −2.02
7.81−6 6,159 1.91−5 1.00 −2.01 2.30−5 1.00 −2.01
1.95−6 12,303 4.76−6 1.00 −2.01 5.49−6 1.03 −2.07

t = 0.5

ε K N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

2.00−3 12 1,523 2.59−1 2.20−1

5.00−4 23 3,425 1.63−1 0.33 −0.57 1.27−1 0.40 −0.68
1.25−4 45 7,935 9.04−2 0.43 −0.70 6.83−2 0.45 −0.74
3.13−5 90 17,467 4.81−2 0.46 −0.80 3.54−2 0.47 −0.83
7.81−6 179 38,535 2.52−2 0.47 −0.82 1.83−2 0.48 −0.84
1.95−6 358 83,653 1.28−2 0.49 −0.87 9.26−3 0.49 −0.88

TABLE 10. Example 4, convergence ford = 3, initial data (t = 0) and terminal
data (t = 0.5) with K = t

τ
for varying time step sizeτ =

√
ε.

d N eL∞

loc
e2d
L∞

loc

N(d)
N(d−1)

2 16,675 4.82−2 4.82−2

3 17,467 4.81−2 4.81−2 1.05
4 18,263 4.79−2 4.79−2 1.05
5 19,063 4.78−2 4.78−2 1.04
6 19,867 − 4.76−2 1.04

TABLE 11. Example 4, scaling behaviour for2 ≤ d ≤ 6 for terminal data
(t = 0.5) with ε = 3.125 · 10−5 for the adaptive procedure andK = 90 time
steps. Ford = 6, the error is only measured in thex1 − x2 plane.
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(a) initial function with zero level
set ford = 2

(b) initial grid for d = 2 (c) initial grid for d = 3

(d) resulting function with zero
level set ford = 2

(e) resulting grid ford = 2 (f) resulting grid ford = 3

FIGURE 8. Example 4 ford = 2 andd = 3, ε = 3.125 · 10−5.

Results for the cased = 2 andd = 3 are given in Tables 9 and 10, respectively. The
initial grid shows a convergence rate as in the earlier examples, since the ellipsoidal struc-
ture has a form similar to the circle. As expected, the convergence order att = 0.5 is
now different due to the need for different time steps. We observe the predicted order of
̺ε,e ∼ 0.5 for the refinement constantε which controls our discretization error. For the
number of grid pointsN we roughly observe an order of̺N,e ∼ −0.8.

The scaling behaviour is displayed in Table 11, up to dimensiond = 6. Note again that
the error computation is the most time consuming part of the numerical procedure. Be-
cause it allows computationally cheap measurements in higher dimensions we additionally
estimated theL∞-error just for thex1 − x2 plane and denoted the result bye2dL∞

loc
. The re-

duction to thex1 −x2 plane is justified in this example, as well as the following one, since
the zero-level set in this plane reflects the dominant behaviour of the function at the final
time, see Figures 8 and 9. Note that as long we could compute both errorseL∞

loc
ande2dL∞

loc

they are here the same for the resulting function att = 0.5. As can be expected from the
picture of the grid in three dimensions, more dimensions only slightly increase the number
of points since in the other dimensions only grid points on the axes are employed.

Example 5.At last, we consider the following problem with mixing fronts:

vt +max
b∈B

(

∑

i

biPi · ∇v

)

= 0, t ≥ 0, x ∈ Ω,(33a)

v(0, x) = min(ϕ1(P
−1x), ϕ2(P

−1x)), x ∈ Ω,(33b)

with d ≥ 2, Ω = (−2, 2)d, ϕ1(x) := q(‖x − r‖) andϕ2(x) := q(‖x − s‖), andq as in
Example3. Here,r, s are the two points inRd defined byr := (0.7, 0.3, 0, . . . , 0) and
s := −r. The matrixP ∈ R

d×d is an orthogonal matrix, and as in Example 4,Pj denotes
thej-th column vector ofP andB = {b = (b1, . . . , bd)

T , bi = ±1}. The definition ofP
and more details are given in the appendix C.
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(a) overlay of both initial
grids,d = 2

(b) initial function with zero level
set ford = 2

(c) initial zero level set ford = 3

(d) overlay of both result-
ing grids,d = 2

(e) resulting function with zero
level set ford = 2

(f) resulting zero level set ford = 3

FIGURE 9. Example 5 ford = 2 andd = 3, α = π
6
, ε = 5 · 10−4, at time

t = 0 in figures (a), (b), (c), and timet = 0.5 in figures (d), (e) and (f).

The exact solution here is

v(t, x) = min
(

ϕ
(

(PT (x− r))∗t
)

, ϕ
(

(PT (x− s))∗t
))

.

In the first two dimensions the zero level set at timet = 0.5 describes the intersection
of two rotated squares with rounded edges, in the other dimensions the level set forms a
square with rounded edges, see Figure 9.

In this example, the initial data and the solution correspond to the mixing of two fronts
and therefore are much less regular than in the previous examples. We numerically ob-
served that the direct application of our adaptive SL-SG scheme from Section 3.1 is not
efficient for dimensionsd ≥ 3 in this case. Hence, we now apply the generalized SL-SG
scheme as described in Section 3.2 which is better suited fordata of the form (33b).

For the generalized scheme, we employ two separate grids. For each initial dataϕi, i =

1, 2, we apply the SL-SG scheme and use the explicit pathsy
b
x(−τ) = x − τ(

∑

i biPi) ≡
x−τPb for all b ∈ B. Then, the minimum of both resulting functions is taken to obtain the
solution at timet. The advantage of this approach is that the (costly) direct representation
due to the discontinuity of the gradient of themin-function is avoided.

We give results for the two- and three-dimensional case in Table 12 and Table 13, re-
spectively. Here we only show the results for the terminal time, the results fort = 0 are
equal to the ones from Example 1, but with twice the number of points. As before, we
observe the predicted order of̺ε,e ∼ 0.5 for the convergence with respect toε and roughly
̺N,e ∼ −0.8 with respect toN .

The scaling behaviour is analyzed in Table 14, this time in upto 8 dimensions. We
observe that the error, the complexity, and the scaling behaviour behave quite well and are
similar to Example 4.
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t = 0.5

ε K N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

2.00−3 12 2,192 9.43−2 5.75−2

5.00−4 23 5,560 3.44−2 0.73 −1.08 2.52−2 0.60 −0.89
1.25−4 45 13,132 1.83−2 0.45 −0.73 1.26−2 0.50 −0.81
3.13−5 90 31,046 8.89−3 0.52 −0.84 6.44−3 0.48 −0.78
7.81−6 179 71,874 4.24−3 0.53 −0.88 3.22−3 0.50 −0.82

TABLE 12. Example 5, convergence ford = 2, terminal data (t = 0.5) with
K = t

τ
for varying time step sizeτ =

√
ε.

t = 0.5

ε K N eL∞

loc
̺ε,e ̺N,e eL2

loc
̺ε,e ̺N,e

2.00−3 12 2,408 8.91−2 6.17−2

5.00−4 23 5,976 4.13−2 0.55 −0.85 2.66−2 0.61 −0.92
1.25−4 45 13,944 2.18−2 0.46 −0.76 1.33−2 0.50 −0.82
3.13−5 90 32,630 1.06−2 0.52 −0.85 6.66−3 0.50 −0.81
7.81−6 179 75,010 5.08−3 0.53 −0.88 3.37−3 0.49 −0.82

TABLE 13. Example 5, convergence ford = 3 for terminal data (t = 0.5) with
K = t

τ
for varying time step sizeτ =

√
ε.

d N eL∞

loc
e2d
L∞

loc

N(d)
N(d−1)

2 5,560 3.44−2 3.44−2

3 5,976 4.13−2 3.61−2 1.07
4 6,400 4.83−2 3.78−2 1.07
5 6,832 5.53−2 3.95−2 1.07
6 7,272 − 4.12−2 1.06
7 7,720 − 4.29−2 1.06

8 8,176 − 4.46−2 1.06

TABLE 14. Example 5, scaling analysis for2 ≤ d ≤ 8 for terminal data (t =
0.5) with ε = 5 · 10−4 for the adaptive procedure andK = 23 time steps. For
d ≥ 6, for the same reasons as in Example 4, the error is only measured in the
x1 − x2 plane.

5. CONCLUSION

We presented and implemented a new spatially adaptive semi-Lagrangian sparse grid
scheme and tested it on a series of linear and nonlinear time-dependent Hamilton-Jacobi
Bellman equations. In particular, we focused on the zero level set of the solution. The
adaptive sparse grid is able to handle the representation ofthe front with reasonable preci-
sion in higher dimensions. This was tested up tod = 8 dimension in this work. From the
numerical point of view, two main ingredients are crucial for our new approach: First, the
adaptivity of the employed sparse grid, and, second, a special boundary treatment allow to
keep the number of necessary sparse grids points relativelysmall. Furthermore we should
emphasize that the sparse grid effect only works properly ifthe data has some potentially
lower-dimensional structure or is roughly axis-aligned, e.g. after a suitable transformation.

As noted, the main computational burden in our SL-SG scheme is the evaluation of the
adaptive sparse grid function. It was shown recently [17] that using a specific reordering
of the steps of the point evaluations together with a GPU-based parallelisation one can
achieve speed-ups of almost 50 in comparison to the standardimplementation of adaptive
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sparse grids. This approach can also be employed in our scheme and could be used to
improve the runtime significantly.

Note that, for the moment, the proposed scheme neither has the monotony property that
would give convergence towards the viscosity solution, norhas provable stability as far
as we know. However, we think that this initial work is an encouraging step towards the
construction of related schemes for the solution of HJB equations in higher dimensions
that could remedy these drawbacks.

Let us also mention that extensions of the proposed scheme tomore general situations
are possible. For instance a sparse grid SL scheme can be straightforwardly defined for
HJB equations with an additional cost term.

APPENDIXA. DETAILS FOR EXAMPLE 2

In order to define the vector fieldf1(x), let us first define two vectorsu, v of Rd as follows:

u = (1, 0, . . . , 0)T and v = (0, 1, . . . , 1)T /
√
d− 1.

We then denote byA the operator such thatA(α, β) = (−β, α) in the basis(u, v), that is,A(αu+
βv) = −βu+ αv. We now decompose a vectorx asx = Px+ (x− Px), wherePx = (x, u)u+
(x, v)v is the projection on the planeVect(u, v). We have also

Px = (x1, y, . . . , y)
T , wherey =

∑d

i=2 xi

d− 1
.

We can now definef1(x) in the following way:

f1(x) = A(Px) := −(x, v)u+ (x, u)v.

We then have

yx(−t) := R−ta(‖x‖)(Px) + x− Px,

where the operatorRθ is represented by the following rotation matrix in the basis(u, v)

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

.

Hence, to computeyx(−t) we have, using the notationθ = −ta(‖x‖),

RθPx = Rθ

(

(x, u)u+ (x, v)v

)

=

(

cos θ(x, u)− sin θ(x, v)

)

u+

(

sin θ(x, u) + cos θ(x, v)

)

v

=

(

cos θx1 − sin θ(x, v)

)

u+

(

sin θx1 + cos θ(x, v)

)

v

and thus

yx(−t) = x+

(

(cos θ − 1)x1 − sin θ(x, v)

)

u+

(

sin θx1 + (cos θ − 1)(x, v)

)

v

where(x, u) = x1 and(x, v) = 1√
d−1

∑

i≥2 xi.

APPENDIXB. DETAILS FOR EXAMPLE 4

We consider the equation

vt + |vx1
− vx2

|+ | − vx2
|+

∑

i=3,...,d

|vxi
| = 0, t ≥ 0, x ∈ Ω,(34a)

v(0, x) = v0(x) = ϕ(P−1x), x ∈ Ω.(34b)
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whered ≥ 2, Ω = (−2, 2)d, andP is the matrix defined by

P :=





















1 0 0 . . . . . . 0
−1 −1 0 . . . . . . 0
0 0 1
... 0

. . .
...

...
. . .

0 . . . 0 1





















.(35)

We denote byPj the j-th column vector ofP , i.e. P = [P1, . . . , Pd] andϕ(x) := q(‖x‖) as
in Example3. Then equation (34a) is equivalent to the HJB equation (31a). To obtain the exact
solution for this problem, letξ be the new coordinate vectors ofR

d in the basis(P1, . . . , Pd) such
thatx = Pξ, and letu(t, ξ) := v(t, x) = v(t, P ξ). Then we have∂ξiu = ∇xv · (∂ξix) = ∇xv ·Pi.

Hence,u is a solution ofut +
∑

i=1,...,d |uξi | = 0 for t ≥ 0 andx ∈ R
d, andu(0, ξ) = ϕ(ξ). The

solution is given byu(t, ξ) = miny∈St(ξ) ϕ(y), whereSt(ξ) := {y, ‖y − ξ‖∞ ≤ t}. Therefore,
u(t, ξ) = ϕ(ξ∗

t
) whereξ∗

t
:= argmin{d(0, y), y ∈ St(ξ)} is the orthogonal projection of0 on

the convex setSt(ξ). SinceSt(ξ) is thed-dimensional box
∏

i=1,...,d[ξi − t, ξi + t], the projection
ξ∗
t
= (ξ∗t,i) can be computed component-wise and we haveξ∗t,i = min(max(0, ξi− t), ξi + t). This

formula will now be denoted by

ξ∗
t
= min(max(0, ξ − t), ξ + t).

Finally we obtain the exact solution

(36) v(t, x) = u(t, ξ) = ϕ(ξ∗
t
) = ϕ

(

(P−1x)∗t
)

≡ ϕ ((Px)∗t ) .

APPENDIXC. DETAILS FOR EXAMPLE 5

We consider

vt + | cosα · vx1
+sinα · vx2

|+ | − sinα · vx1
+ cosα · vx2

|(37a)

+
∑

i=3,...,d

|vxi
| = 0, t ≥ 0, x ∈ Ω,

v(0, x) = min(ϕ1(P
−1x), ϕ2(P

−1x)), x ∈ Ω,(37b)

whered ≥ 2, Ω = (−2, 2)d, and in this exampleP is the matrix defined by

P :=





















cosα − sinα 0 . . . . . . 0
sinα cosα 0 . . . . . . 0
0 0 1
... 0

. . .
...

. . .
. . .

0 . . . 0 1





















.(38)

Let againPj denote thej-th column vector ofP and B = {b = (b1, . . . , bd)
T , bi = ±1}.

Then, equation (37a) is equivalent to the HJB equation (33a). Note that sinceϕ(x) := q(‖x‖)
andP orthogonal, and withϕ1(x) := ϕ(x − r) andϕ2(x) := ϕ(x − s), we havev(0, x) ≡
min

(

ϕ1(x), ϕ2(x)
)

here. The exact solution for each initial dataϕi, i = 1, 2 is obtained as in the
previous example, and therefore

v(t, x) = min
(

ϕ
(

(P−1(x− r))∗t
)

, ϕ
(

(P−1(x− s))∗t
)) (

with P−1 = P T
)

holds.
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[3] H.-J. Bungartz and M. Griebel. Sparse grids.Acta Numerica, 13:147–269, 2004.



AN ADAPTIVE SPARSE GRID SEMI-LAGRANGIAN SCHEME FOR HJB EQUATIONS 25

[4] E. Carlini, M. Falcone, and R. Ferretti. An efficient algorithm for Hamilton–Jacobi equations in high dimen-
sions.Comput. Vis. Sci., 7:15–29, 2004.

[5] E. Carlini, R. Ferretti, and G. Russo. A weighted essentialy non oscillatory, large time-step scheme for
Hamilton Jacobi equations.SIAM J. Sci. Comp., 27(3):1071–1091, 2005.

[6] M. Crandall and P.-L. Lions. Two approximations of solutions of Hamilton Jacobi equations.Mathematics
of Computation, 43:1–19, 1984.

[7] K. Debrabant and E. Jakobsen. Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi
equations.To appear in Math. Comput.
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