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ABSTRACT. We propose a semi-Lagrangian scheme using a spatiallyieelaparse grid
to deal with non-linear time-dependent Hamilton-JacoHirBan equations. We focus in
particular on front propagation models in higher dimensiwaich are related to control
problems. We test the numerical efficiency of the method @araébenchmark problems
up to space dimensiah= 8, and give evidence of convergence towards the exact vigcosi
solution. In addition, we study how the complexity and ps&ri scale with the dimension
of the problem.

1. INTRODUCTION
We are interested in solving the Hamilton-Jacobi BellmadB&Hequation

(1a) v+ max (f(z,B(t)) - Vv) =0, t>0, zeRY
Bt)eB

(1b) v(0,z) = p(z), zeR

in a higher dimensional state space of dimensiofheaction space B, wherein the time-
dependent contrgd takes its values, is a nonempty compact subs@&df(m > 1), and
the functionf : R? x B — R¢, describing thestate dynamics, is assumed to be Lipschitz
continuous. This problem is closely related to the computatdf the value function of
optimal control problems [2]. Note here that the HIB equefia) is a particular case of
the more general Hamilton-Jacobi (HJ) equatipf- H (z, Vo) = 0.

In this paper, we shall focus on the approximation of a reblehset, either coded as
Q(t) := {z,v(t,z) < 0} or defined by its frondQ(t). Itis known from the work of Osher
and Sethian [22] that front propagation problems can beesidby using level sets and HJ
equations. Front propagation can be used for the deteriminatt safety regions or for the
treatment of avoidance problems [20, 21], for the compatatif the function describing
the minimal time to reach a set

2 Q(0) :== {z, p(z) <0},

and for optimal trajectory and feedback control law recargtion, cf. [2, Appendix]. In-
deed, the solution of (1) is given by

3 t,z) = inf Bt
©) u(t, z) ﬂeLogr(l[07t]76)<ﬂ(y£( ),

Whereyg : [0,¢] — R< denotes the absolutely continuous solution of

§() = —Fy(0).8() fort c R, ae,
) {y<o> .
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HenceQ(t) = {g e R4, 35 € L>=([0,1],B), y3(t) Q(O)} represents the set of points

from which one can reach a given targd0) in the time interval0, ¢] using some control
B, wheref2(0) is defined by the given datasuch that (2) holds.

Various numerical methods have been proposed to determprexmations to the vis-
cosity solution ofv; + H(z, Vv) = 0 (which includes the case of (1)). Crandall and
Lions [6] studied first order monotone finite difference soles, which converge to the
solution. Note that monotone schemes are in general linmtatimost first order accuracy
[13]. Beyond that, higher order finite difference schemeshsas ENO schemes [23], have
also been developed. These finite difference methods watk gfiiciently for Cartesian
meshes, but on unstructured meshes the schemes are mesealf2P]. Discontinuous
Galerkin (DG or RKDG) methods, originally devised to solmservation laws, can also
be applied to HJ equations, with the flexibility for arbitharunstructured meshes [18].
Then, there are semi-Lagrangian (SL) schemes which arel loasthe discretization of the
dynamic programming principle, see e.g. [11]. They can ls#lyeamplemented on arbi-
trary meshes. Here, it is mainly required to know how to iptdaite from given values on
a given mesh. A simple version of the SL scheme, which lsgslynomial interpolation,
is monotone and provides first order accuracy. Furthermagher order modifications
exist, see e.g. [5, 7, 10]. Finally, adaptive schemes farisglthe HJ(B) equation have
been developed, see for instance [4, 16]. But altogethemtimerical treatment of HJ(B)
equations remains a challenging problem, in particulaighér dimensions.

In this work we employ the sparse grid method, a special eis@tion technique which
allows to cope with the curse of dimensionality to some etxtiéis based on a hierarchical
multilevel basis [8, 27] and a sparse tensor product coctitru The underlying idea was
first used for numerical integration [26]. Subsequentlg, $harse grid method has been
developed for the solution of partial differential equasd14, 28]. By now, it is also
successfully used for, e.g., integral equations, stozhdgferential equations, machine
learning, or interpolation and approximation, see theiegrarticle [3] and the references
cited therein.

For the representation of a functigrdefined over @a-dimensional domain, the conven-
tional sparse grid approach empla9gh;;* -log(h;;1)?1) grid points in the discretization
process, wheré,, := 27" denotes the mesh width. It can be shown that the order of ap-
proximation to describe a functiofy provided that certain mixed smoothness conditions
hold, isO(h2 -log(h;,;1)41). This is in contrast to conventional grid methods, whichchee
O(h;,;?) for an accuracy o®(h2), albeit for less stringent smoothness conditions. Thus,
the curse of dimensionality of full grid methods arises foarse grids to a much smaller
extent. In case the smoothness conditions are not fulfiflpdtially adaptive sparse grids
have been used with good success [3, 12, 25]. There, as irdapyiee grid refinement pro-
cedure, the employed hierarchical basis functions aresthadsring the actual computation
depending on the function to be represented.

In this paper we define a new semi-Lagrangian scheme on atialgparse grid. We
show that, for a particular kind of HIB equations relatedhtoftont propagation model, the
number of grid points needed in higher dimensions to apprately represent the involved
functions with a given threshold error can be small. Thus,ane able to circumvent
the curse of dimensionality of standard grid approache®toesextent. There are two
important ingredients that make things work: firstly, thatsd adaptivity of the sparse
grid used in the scheme, and secondly, a particular type whdbary treatment using non-
standard basis functions. We illustrate the feasibilityhef method numerically for a set
of front propagation examples for dimensions upte 8.

Note that the introduced sparse grid scheme is not mono®tieeanterpolation with
sparse grids is not monotone [25]. Thus neither convergeweards the viscosity solu-
tions of (1) nor stability can presently be guaranteed, évethe linear advection equation.
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(a) Basis functionp(z 1y, (1,1) On grid Qs - (b) Three-dimensional sparse gfit

FIGURE 1. An example of a basis functiof),; and a sparse gri@?;,.

To this end, further work on the new scheme is in progress.eMiegless, our numerical
results give promising results.

This paper is organized as follows. In section 2 we deschibsparse grid structure we
use to represent the data, the boundary treatment, and dp&\adrefinement and coars-
ening procedures. Our new adaptive semi-Lagrangian sggicescheme is introduced
and discussed in Section 3. Section 4 contains the result&fibus numerical examples.
Finally we give some concluding remarks.

2. SPARSEGRIDS

For ease of presentation we will consider the donfais- [0, 1]¢ in this section. Let
L= (ls,...,13) € N* denote a multi-index. We define the anisotropic dejdon  with
mesh widthh; := (hy,,..., k) == (27h,...,271), It has, in general, different but
equidistant mesh widthig, in each coordinate directiont = 1, ..., d. The gridQ}; thus
consists of the points
(5) Lij = (Ttygas- - 7xld;jd)7
with 2, ;, == ji - by, = ji - 27% andj, = 0,...,2%. For any gridQ; we define the
associated spadé of piecewised-linear functions
(6) Vi = spar{¢y; | je =0,...,2"%, t=1,....d},

which is spanned by the conventional basigiafimensional piecewisé-linear hat func-
tions

d
(7) drj(@) = [ bu..(xe).
t=1

The one-dimensional functiors ; (z) with support
[1,j — huy @+ ha] N[0, 1] = [(7 — Dha, (5 + 1)) N [0, 1]
are defined by
s () = { L=fo/hi=jl, @ €[ = Dhi, (G + D] 0[O, 1],
0, otherwise

(8)

see Figure 1(a) for an example of a two-dimensional basistium

The multi-index € N? denotes the level, i.e. the discretization resolutiont béa grid
Q, of a spacé/, or of a functionf;, whereas the multi-index € N gives the position of
a grid pointz,_; or its corresponding basis functign ;. -
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FIGURE2. Supports of the basis functions of the hierarchical satsgii;. All
spaces are used fdf;, only the marked upper left triangle is used 16f.

We now define a hierarchical difference spaégvia

d
9) Wi =V \ Vi,
t=1

whereg, is thet-th unit vector. In other wordsl}; is spanned by alp, ; € V; which

are not included in any of the spacgs smallef thanVj. To complete the definition, we
formally setV, := (), if [, = 0 for at least on¢ € {1,...,d}. As can be easily seen from
(6) and (9), the definition of the index set

Ge=1,...,2" -1, jtodd,t_l,...,d,iflt>1,}

(10) i {l jr =0,1,2, t=1,...,d,ifl;, =1

leads to

(11) W, = spar{¢;|j € B}
With these hierarchical difference spaces we now can defineléievel subspace decom-
position and writé/; as a direct sum of subspaces

l1

la
(12) Vi=@P - Pw.=Pw.

k1=1 kq=1 k<l
Here and in the following £” refers to the element-wise relation for multi-indicesr+u
thermore|l|o := maxi<i<ql; and|l); := Zle l; are the discreté>- and the discrete
¢1-norm ofl, respectively.
The family of functions

(13) {%1 i€ BL} i

is just the hierarchical basis [8, 27]6f,(:= V{,,,... »)), Which generalizes the one-dimensional
hierarchical basis, see Figure 3(a), to #hdimensional case with a tensor product ansatz.

IWwe call a discrete spadg, smaller than a spadg if Vik: < Iy and3t : k; < ;. In the same way a grid
Q, is smaller than a gri€;.
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Observe that the supports of the basis functionsg(z), which spani?;, are disjoint for
L > 1. Figure 2 gives a representation of the supports of the hasctions of the differ-
ence spacel/;, ;, forming V;.

Now, each functiorf € V,, can be represented as

(14) f@) = > oy

|lec <n JEBL

whereq; ; € R are the coefficients of the representation in the hieraattémsor product
basis. In one dimension it is easy to see that they specifyt s to be added to the
hierarchical representation of level 1 to obtain that of level. This generalizes to higher
dimensions accordingly and specifies what has to be addée teepresentation in space
EBt 1 Vi_e, to obtain a representation 1.

The number of basis functions which describg & V,, in nodal or hierarchical basis
is (2" + 1)9. For example, a resolution of 17 points in each dimensien;i.= 4, for a
ten-dimensional problem needs more tRan0'? coefficients, i.e. we encounter the curse
of dimensionality.

On the other hand it was observed that for a functfowith bounded second mixed
derivatives it holds

I filla < C(d) - 2720 | flg2
Wherefl = ZJEBL o -, J( x) € W, denotes its hierarchical components $ﬁ|glfz =

|l 5er—= ng isthe H2 . -semi-norm, see [3, 28] for details.

Motlvated by this dependence of the “importance” of thediehical componentg on
the size of the supports of the involved basis functions| kepp ¢, ;| = 2¢ - 27, Zenger
[28] and Griebel [14] introduced so-callgparse grids, where hierarchical basis functions
with a small support, and therefore a small contributiorhftinction representation, are
not included in the discrete space of lewehnymore.

Formally, the sparse grid function spacé C V,, is defined as

(15) vi= P W

[t]1<n+d—1

where in the definition (12) foV,, in terms of hierarchical subspaces the conditibg <
n is replaced byl|; < n +d — 1. In Figure 2 the employed subspadés are given in
black, the spaces omitted in comparison to (12) are givemndp.g

Every f € V.? now can be represented, analogous to (14), as

(16) fam) = >0 D ez

L1 <n-+d—1j€B;

The resulting grid which corresponds to the approximatymaceV,’ is called sparse grid
and is denoted b{2? , an example in three dimensions is given in Figure 1(b).

The sparse grid spadé’ has a size of ordetim V, = O(2" - n?~1), see [3]. It thus
depends on the dimensiaito a much smaller degree th&f) whose number of degrees
of freedom isO(2"%). Note that for the approximation of a functighby a sparse grid
function f; € V,? the error relation

If = follz=0 (272" -0t

holds, provided thaf fulfils the smoothness requiremq[ﬂHﬁm < oo [3]. Therefore,
sparse grids need much less points in comparison to a faltgrobtain an error of the
same size.
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b10 P11 ®1,2 b1

®2,1 ®2,3 P2,1 $2,3
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(a) Hierarchical basis functions; ; up to level 3 (b) Modified basis functiong;_ ; up to level 3

FIGURE 3. Standard and modified hierarchical basis functions.

b3 $2,3 ®2,3

T2 3 1 T2 3 1 T2 3 1

FIGURE 4. The modified hierarchical basis functign 3 stems fromgz 3 by
folding up the half of the hat function near the boundaryhért can be straight-
forwardly extended to the outside of the dom&imsing linear extrapolation.

2.1. Modified basis functions on the boundary. Looking more closely at the number of
basis functions used for a regular sparse grid of ley@e observe that the ratio of points
on the boundary versus that in the interior grows signifiganith increasing dimension-
ality [25], i.e. more and more grid points are spentash When dealing with functions
that are zero or fixed 062, e.g. in case of Dirichlet boundary conditions, one coukt ju
work without the two basis functions; o and¢, » to avoid this effect. But since in our
application the function values on the boundary are not knawriori, we can not employ
this approach.

Instead, we proceed as follows: We still omit the grid poorshe boundary but addi-
tionally modify the interior basis functions so that theyrapolate towards the boundary,
as it was proposed in [25]. Figure 3(b) illustrates this rfiodtion for the case of level
n = 3, the interior basis functions nearest to the boundary arkeléfd up” for any level,
see also Figure 4 (mid). Thédimensional basis functions are again obtained as tensor
products of the one-dimensional ones in the same way asildeddn the previous section.
This modification can be advantageous especially in sattivitere the accuracy close to
the boundary is not required to be very high. In our casemilisorrespond to the situa-
tion where the zero level is not located close to the boundemgther advantage of these
modified basis functions is the fact that we are able to ewtede values for points outside
of the domain, we thehnearly extend the basis functiorzfs_,i, i = 1,2! —1 to the exterior,
which is illustrated in Figure 4 (right). This property witlter be used for those examples
where trajectories which leave the domain need to be coreside

2.2. Spatially adaptive sparse grids. The sparse grid structure (15) defines an a priori
selection of grid points that is optimal if certain smootemeonditions are met, i.e. if the
function has bounded second mixed derivatives, and nodukihowledge of the function

is known or used. If the aim is to approximate functions whéder do not fulfil this
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smoothness condition at all or show strongly varying befwavdue to finite but neverthe-
less locally large derivatives, then adaptive refinement beaused. There, depending on
the characteristics of the problem and function at handptadarefinement strategies de-
cide which points and corresponding basis functions shbelithcrementally added to the
sparse grid representation to increase the accuracy.

In the sparse grid setting, usually an error indicator stergrdirectly from the hierar-
chical basis is employed [12, 15, 25]: depending on the diteechierarchical surplus;, ;
it is decided whether a basis function should be marked fahéu improvement or not.
This is based on two observations: First, the hierarchigglas gives the absolute change
in the discrete representation at paint; due to the addition of the corresponding basis
functiong, ;, i.e. it measures its contribution to a given sparse gridesgntation (16) in
the maximum-norm. And second, a hierarchical surplus s discrete second mixed
derivatives and hence can be interpreted as a measure ohtiwtmess of the considered
function at point; ;.2

In the adaptive procedure we use a Betb track the indices of the employed basis
functions and denote the corresponding sparse gri@bgnd the associated sparse grid
space byz, respectively. We start with a coarse initial sparse grittfion f;; € V;? for
some given smalh as in (16). The index set is thus initialized Bs= {(L,j) | |Ij1 <
n+ d — 1}. We proceed as follows: If, for any given indéxj) € Z, we have

17) log,j] - lbu, 511 > €

for some given constaat> 0, then the index will benarked. Here,|| - || is typically either
the L>°- or L2-norm, but other norms or weighted mixtures of norms are irs@dactice
as well. If an index is marked, all it so-calledchildren will be added to the index s&t
to refine the discretization, i.e. dll, j) with [ = [+ ¢, andj = j + j; ¢, + 1 will be added
toZ fort = 1,...,d. For the indices added that way it is possible that nopaidénts in
all dimensions are already contained in the grid; note thatich cases, for algorithmic
and consistency reasons, these missing parents have tdée @d as well. Thus for any
(L,j) € Zitholds that all parentd, ) with I < L andsupp(¢; ;) N supp(¢y,;) # 0 are also
in the index sef. In other words, holes in the hierarchical structure areatiotved. The
refinement step is repeated until no indices are added amyrimAlgorithm 1 we give the
full adaptive refinement procedure. Note that if a globabecriterion is available one can
perform an additional outer loop with successively dedrepsuntil the measured global
error falls below a given threshold; .

In a similar way one can use the valltg ;| - ||¢: ;|| to coarsen the grid in case of
over-refinement. If this value is smaller than some coarggodnstant), and no children
of (,7) are inZ, the index will be removed from this set. In Algorithm 2 we githe
coarsening step, where the procedure is repeated untildicemare being removed. The
coarsening will in particular be relevant once we consioleetdependent problems where
the region in need of a higher resolution moves over the domihis will be described
more precisely in Section 3.

3. SEMI-LAGRANGIAN SCHEME

We will now use adaptive sparse grids in a new semi-Lagranggheme for Hamilton-
Jacobi Bellman equations. Here, we focus on the equation

(18a) ve(t,z) + max (f(z,8(¢)) - Vo(t,z)) =0, t>0, ze€q,
B(t)eB

(18b) v(0,2) = p(z), z e

The state dynamics functiofiis assumed to be Lipschitz continuous. We are interested
in the zero level set of(t,-). The regionQ(t) := {z|v(t,z) < 0} is also called the

2Here, also many other approaches exist, which are basedespatets, prewavelets or wavelets, cf. [12].
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Algorithm 1: Spatially Adaptive Refinement
Data: initial index setZ, refinement thresholeland function evaluatio®’
Result refined index sef, adaptive sparse grid approximation/ofin Vz
for all indices (I, j) € Z do
L computeF(g;j) > evaluate F at initial grid points

compute hierarchical values ; for all indices, see e.g. [15]
while indicesare added to Z do

for (I,j) € Zdo > l ook at all indices
if |Ole'| : H@g” > ¢ then
fort=1,...,ddo > hierarchical surplus is |arge

if (I,j)¢ Zforl=1+¢,andj € {j+ jie, £ 1} then
| Z=7u(l,j) > add children which are not inZ

checkv(L, j) € Z holds:(, j) € Z for I < Landsupp(g; ;) N supp(¢y ;) # 0

for all added indices (1, j) € Z do
L computer(z; ;) > evaluate F at new grid points

compute hierarchical values ; for newly added indices, see e.g. [15]

Algorithm 2: Spatially Adaptive Coarsening

Data: index setZ, coarsening thresholgl andoy ; V(1, j) € 7
Result coarsened index sé&t -
while indices are removed from Z do

for (I,j) € Tdo > l ook at all indices
if [ay | - |51 < nthen > hierarchical surplus is small
ifvt=1,...,d: (I,j) ¢ Zforl=1+e,andj € {j + j, e, £ 1} then

| I=17\(Lj) > remove if no children in Z

(backward) “reachable set”. As mentioned in the introdurtit corresponds to the set
of points that can be reached at tihg> 0 by some trajectory that starts frof2(0) :=
{z|¢(z) < 0}, see [22].

In the following we will introduce a semi-Lagrangian (SLhstne for the numerical
treatment of (18). Itis inspired by the dynamic programnpnigciple, which is here:

_ ; B(_

(19) v(t+T,2) = ﬁeLo{jr%%gT];B)v (t,yl( T)) vr > 0.
Together withv(0, z) = ¢(z) this is equivalent to equation (18), see [2]. Heygé denotes
the absolutely continuous solution of the correspondiatesiynamics system (4). Hence
y2(—7) in (19) is a solution of (4) backwards in time, it gives thergdirom whichz is
reached under contrglin the time intervalt, t + 7).

For the discretization of the time intenval, 7], let K be the number of time steps, let
7 := T/K be the time step and sgt := k7, k € {0,---, K — 1}. Note that from now
on we will only consider controls that are constant duringreetstep, i.e 5(t) = by, t €
[tk,tx + 7], and we will denote the corresponding trajectory /g —7). Furthermore, the
computation of,%* (—7) can be done in an approximate way without changing the core of
the scheme, by e.g. using some high order Runge Kutta melthtiee numerical examples
of Section 4, there will be no need for such approximationsesthe consideregl: (—7)
can be calculated analytically. B
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Let us for now consider a suitably chosen sparse grid The semi-Lagrangian (SL)
scheme to solve (18) in the time intery@l 7'] on Q7 then takes the following form:

e Initialize vo € Vz by interpolatingp.
o lterate fork =0,..., K — 1,

(20) vpt1(z) = gnin Vg (ygk(—T)) Vo € Q7.

rEB

Here,v;, € V7 is the numerical solution computed by the scheme at tigrend the value
Vg (yﬁk(—ﬂ) denotes the sparse grid interpolatiomgfat pointy’ (—7). In general,
depending on the initial function and the state dynamicgezific treatment of the case
ybe(—7) ¢ Q is necessary; for our approach we will give details in the atical section.
Moreover note that for our experiments in Section 4 the mizétion over the seB can
be done in a straightforward way by evaluating the functialugs for each possible action
br € B. In case this number is too large, or if the &ets infinite, then a minimisation
procedure which uses only evaluations of the objectivetfancand not its derivatives,
could be performed without changing the main steps of the&s&L.scheme. We refer for
instance to [4], where this approach was successfully eyepldor a semi-Lagrangian
scheme using Brent's minimization algorithm.

3.1. Spatially adaptive semi-Lagrangian sparse grid schemeWith an SL scheme us-
ing spatially adaptive sparse grids (SL-SG scheme), thdameg selection of grid points
needs to be changed from time stepo ¢, for a fully efficient scheme to achieve the
smallest grid for a given accuracy at each time step, i.eedohk there is a corresponding
adaptive sparse griz(;), defined by the index séf(k), with an approximate solution
v € Vz(r). To this end, we first discretize in time and then in spacs,dpproach is often
called Rothe-method.

To compute the approximate solutiogp,; for the next time step.1; the new index set
Z(k+ 1) isinitialized byZ(k). For this index set the effect of the actions is then evatliate
and the approximation at timg_ 1 is computed foZ (k + 1) as

U’Hl@bi) = szé%“’“ (yg’zl‘(—T)) Y(l,j) € Z(k +1).
With that, one can compute the hierarchical surplys for all (1,j) € Z(k + 1), mark
those indices with coefficients which are larger than theesfient constant, add the cor-
responding child indices t@(k + 1) and repeat. In other words, we apply Algorithm 1

where the function evaluatiof'(z) is gni% U (ygk(—T)). After the new sparse grid
[3S -

Q741) is sufficiently refined we apply Algorithm 2 to remove the sdp®us indices
up to some minimal level. This coarsening not only concehilsien added newly in the
refinement step which are not needed in the end, but is incpéatirelevant to take the
movement of the region of interest in time into account, Whiorresponds to the state
dynamics. In other words, the higher resolved area of tte stzace changes in time. The
full spatially adaptive semi-Lagrangian Sparse Grid sah@ngiven in Algorithm 3.

3.2. Non-smooth initial data. We now explain how the scheme can be generalized to the
case of non-smooth initial data of the form

1=1,...

(21) plz) = min (a; +pi(z)),

whereJ > 1, a; € R and wherep; : R? — R are some given functions. Each function
; will be assumed to be sufficiently smooth to allow for the éfit application of the
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Algorithm 3: Adaptive SL-SG scheme

Data: suitable initial index seT, refinement constastand coarsening constait
Result sequence of adaptive sparse grid solutigns Vz) fork =0,..., K

call Alg. 1withZ, e and F(z) = () > interpolate ¢ by vy € Vg
call Alg. 2 withZ(0), n andwg > coarsen vy
fork=0,..., K —1do >iterate in tine
call Alg. 1 withZ(k), e andF (z) = min vk (Y2 (—7)) > conput e
S -
V1 € V) call Alg. 2 with Z(k + 1), n andvy 41 > coarsen i
SL-SG scheme to the following subproblemsfet 1,..., J:
(222) v (t,2) + max (f(zB(1) - Vo (t,2)) =0, te(0,7), zeq,
B(t)eB
(22b) v(0,2) = pi(z), zEQ

Note that by using the equivalent formula (3) for initial a@aftf the form (21), the solu-
tion of (18) is also given as
- m (@)
vlt.z) = min ) (“z v (’5’@) '
Here each/( is the solution of the subproblem (22) associated;to
Indeed, it is well known (see [19], the "max-plus approach[ld, and the references
therein) that for a convex Hamiltonian

H(z,p) = max (f(z,b)-p)

the solutionu(t, -) of v, + H(z, Vv) = 0 with initial datav(0, -) = ¢() has a "min-plus”
property: For any decomposed in the form (21) we have, z) = min; (a; + (Sty;)(z)),
whereS* denotes the semigroup associatintp its corresponding solution(t, -) = Stp.
Therefore, we can apply an adaptive SL-SG scheme to eaidi ddtay; from (21), where
values and grid points are adapted with respecpto In order to obtain the value of
v(T, z) at the final computational tini€ and for a given point, we minimize the/ values
a; + v (T, z) by using the corresponding sparse grid representation af €& (T, -)
which we computed separately up to tifie Hence this scheme needssparse grid
functions. However the computation of th& can be done independently and therefore
completely in parallel. This generalized scheme will bel@ppto the example 5 in the
following section.

4. NUMERICAL RESULTS

We have tested the adaptive sparse grid procedure from itigoi3 on various nu-
merical examples. We shall show two types of results. Thedite concerns numerical
convergence, and the second one deals with the scalingibeha¥ the proposed scheme
with respect to the dimensiah> 2.

In our tests we only compute the*- and L2-error against the known exact solution
localized around the zero level set. This localization sgidace for two reasons. First, the
region around the zero level set is the important one for pptieations, and second and
more importantly, we can thus reduce the computationatteibo the error calculation in
higher dimensions. To this end, we define the region

Qc(v) = {z[|v(t,z)| < c}
around the zero level set of the exact soluticat timet, wherec > 0 is a given threshold.

In general one would defin@’ (v) such thatuv(t,z)|/||Vu(t,z)|| < ¢, but since in our
examples we will hav@Vu|| ~ 1 near the zero level set we simplify the criterion and use
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only |u(t,z)| < ¢. We now can localize any function in particular the exact solution
and its numerical approximatian,, by setting the function to zero outside®@f (v), i.e.

u(z), if z € Qilv),
uloc(g) = . t
0, ifz¢Q.(v)
To simplify the presentation we do not indicate the dependefu;,. on Q¢ (v) since

Qt(v) straightforwardly follows from the context for any emplaye;,.. Now we can
define the relative localized>°-error at timet;, by

(23)

||vloc(tka ) - 'Uk,loc(')HLx
vioe (tr, ) | o

To this end, letv(tx, -) denote the exact solution at tinig, whereasv,(-) denotes the
sparse grid approximation function at tirt)e Their localized counterparig,. andvy, joc
are then defined by (23) usiif@f* (v). The discrete local>-error at timet, is now further
approximated using an equidistant tensor @gricovering the whole domain, i.e.

max [Vioc(trs ) — Vi ioc(2)]
(24) e = —

loc IS

)

where||voe(ty, )| L= = c.
The relative localL-error is defined in a similar fashion by

zeg

1/2
( Z |Uloc(tka§) - Uk,loc(£)|2>
(25) €r2 =

loc 1/2
< Z |Uloc(tkv £)|2>

zeg

For the computation of these localized relative errors oipntsz € G N Q' (v) are now
relevant due to the localization. In our examples we ANigse= 70 points in each direction
for the gridG andc = 0.2. Note that in higher dimensions the error computation using
the gridG will still dominate the computational time, even in the lbzad form. Let us
remark that we observe with a relative loéaP error of roughlyl0~2 already a quite good
localization of a front in our numerical experiments.

To analyze the rate of convergence of the adaptive spardesgfieme with respect to
- for instance - the refinement constantve compute the quantity

_ log(ej/ej1)

- log(ej/ej-1)’

wheree; is the error corresponding to the refinement constansee Section 2.2. Here,

j enumerates the sequence of refinement constants used ahdhitervcorrespond to the
rows in the tables of the numerical results. The order of th& complexityoy, ., is
defined analogously, wherg; is the number of sparse grid points in the adaptive sparse
grid which results from the refinement constant

In the following, we first test our new adaptive SL-SG scheméveo linear examples
and discuss its properties. This corresponds to the phaticase of the control séf in
(1) consisting of just one element. Then, we apply it to moelved nonlinear HIB
equations.

In all examples we start with a sparse grid of level 3, whichlgo the minimal level
for the coarsening procedure. Moreover, we always empleyribdified basis functions
of Figure 3(b) from section 2.1 in our sparse grid algorithibe coarsening constant
corresponding to a givenis set ton = ¢/5 in all of the following examples. As norm in
the refinement condition (17) we always usgo..

QEj ,€5
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€ N €L>® Qc,e ON,e €r2 Qc,e ON,e

loc ’ loc

8.00_3 133 9.73_3 1.15_»

2.00—3 261 244_3 1.00 —2.05 299_3 0.97 —-2.00
5.00_4 517 6.08_4 1.00 —-2.03 7.50_4 1.00 -—2.02
1254 1,029 1524 100 -201 1864 1.01 —2.03
3.13_5 2,063 3.81_5 100 —-2.00 4.67_5 1.00 —2.00
7.81_¢ 4,101 9.53_¢ 1.00 —-2.00 1.16_5 1.00 —2.01
1.95_¢ 8,197 2.38_¢ 1.00 —2.00 288_¢ 1.01 —2.02
4.88_7 16,389 5.88_7 1.01 —-2.02 6.76_7 1.05 —2.09

€ N €r>® Oc,e ON,e €12 Q¢,e ON,e

loc loc

8.00—3 105 1.14 4 1.92_4

2.00_3 201 2.85_2 1.00 —-2.14 4.79_o 1.00 -—-2.14
5.00—4 393 712_3 1.00 —-2.07 1.20_2 1.00 —2.07
1.25_4 s 1.78_3 1.00 —-2.03 299_3 1.00 -—-2.04
3.13-5 1,547 4454 100 -2.01 7.48_4 1.00 -2.01
781_¢ 3,081 1114 1.00 -2.01 1.87_4 1.00 -2.01
1.95-¢ 6,155 2.78_5 1.00 -2.00 4.68_5 1.00 —2.00
4.88_7 12,297 6.95_¢ 1.00 —-2.00 1.17_5 1.00 —2.00

TABLE 1. Example 1, convergence fdr= 2, initial data ¢ = 0) and terminal
data ¢ = 1), after K = 12 time steps.

Concerning the boundary treatment, we consider threerdiffdypes of examples. At
first there are problems where the trajectory is known toisitsige the domain, hence there
is no need for a specific treatment for the boundary (Exand3). For the second type,
we know that there is always at least one trajectory stayiegle$2 and those leaving the
domain can be safely ignored (EX. If this is not the case, i.e. if possibly all trajectories
end up outside of2, we utilise the fact that our modified basis functions enaldeo
extrapolate function values even outside of the domainZsEe and use the extrapolated
values for the scheme if necessary (Exand4).

Example 1.We consider the following advection equation:

v+ f- Vo =0, t>0,xz€Q,
v(0,z) = p(z), z€Q,
whereQ) = (-2,2)¢, f = f(z) = (-1,...,—1) and
o(z) = ||z —al|3 —r3, withry=0.5.

The vector is defined by the firsf coordinates of the sequentg, 1, 1, 1, 77, &%), there-
forea does not correspond to a sparse grid point. The Ieve{l;sb,b(_) = 0} represents a
sphere inR¢ of radiusr, centered at. This system describes the movement of the initial
functiony, and hence its zero level set, in directipnThe exact solution for this advection
equation is given by(t, z) = ¢(z — ft).

We start with a convergence analysis for dimensions two and fin Table 1 we first
consider the two-dimensional case. For different refindroenstants we give fort = 0
(initial data) and fot = 1 (terminal time) the numbe¥ of resulting sparse grid points, i.e.

= |Z(?)|, and the local errors, = ande2 which were obtained.

We observe thap. . ~ 1, hence the computed errargee andeLz depend linearly
on the parameter of the adaptive refinement procedure We therefore can esthe
error in a controlled fashion by correspondingly reduchgparameter in the refinement
procedure. Moreover, we approximately have. ~ —2, hence the computed errors are
of second order with respect to the total number of sparskepgrints V.
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8.00_3 281 1.95_2 2.28_o

2.00—3 537 4.88_3 1.00 —-2.14 5.73_3 1.00 -2.13
5.00_4 1,049 1.20_3 1.01 -2.09 1.42_3 1.01 -2.09
1.25_4 2,073 3.056_4 099 —-2.01 3.61_4 099 -2.01
3.13_5 4,121 7.62_5 1.00 —-2.02 9.00_5 1.00 -—2.02
781_¢ 8217 191_5 1.00 -2.01 223_5 1.01 —2.02
1.95_¢ 16,409 4.76_¢ 1.00 —2.00 5.39_¢ 1.02 —2.05
4.88_7 32,793 1.0l1_¢ 112 —-224 1.10_¢ 1.15 —=2.30

€ N eroo Qe,e ON,e er2 Os,e  ONe

loc

8.00—3 225 2.28 4 3.84_1

2.00_3 417 5.69_2 1.00 —-2.25 9.59_o 1.00 -—-2.25
5.00—4 801 1.42_5 1.00 —-2.12 240_2 1.00 —2.12
1254 1,569 3.56_3 1.00 —2.06 5.99_3 1.00 —2.06
3.13_5 3,109 890-4 100 -2.03 1.50-3 1.00 -2.03
781_¢ 6,177 2224 1.00 -2.02 3.75_4 1.00 —-2.02
1.95_¢ 12,325 5.54-5 1.00 -2.01 9395 1.00 -2.00
4.88_7 24,609 1.39_5 1.00 —-2.00 237_5 0.99 -—-1.99

TABLE 2. Example 1, convergence fdr= 4, initial data ¢ = 0) and terminal
data ¢ = 1), after K = 12 time steps.

To summarize, for both types of errors we observe the bebavio

(27) erz ez ~Cq -e and  ep=, ez~ C, N2

loc

with Cy, C’, constants independent ofand NV, respectively, but dependent on the dimen-
sion of the problem. This holds for both= 0 andt = 1.

We observe the same type of behaviour for $h@imensional case (not shown here),
as well as for thet-dimensional case, see Table 2. Thus, (27) holds indepéiofi¢me
dimension. This is due to the specific structure of the ihitéeda and the solution which is
resolved by the adaptivity of our approach. All employedrsparid points are on one of
the coordinate axes, see Figure 5, therefore the adaptveesgrid is just the superposition
of d one-dimensional grids which explains (27) for all dimensio

Moreover, we observe here that the number of sparse gridgpfmnthe terminal data
(t = 1) is smaller than that for the initial data. This is at leagpamts due to the evaluation
outside of the domain in direction of the flofvn (20). There, instead of the exact solution
v one needs to employ the discretized resulting in incoming data which is more easily
representable by an adaptive sparse grid. We will not olesereh a decrease of the number
of necessary points in the general case, though.

Next, we consider the dependence of the complexity on thewinnd of the problem
for a fixed threshold. The obtained results are presented in Table 3. We can abserv
that for timet = 1, the numberNV of points scales linearly with the dimensidrof the
problem, i.e.N ~ d. This almost perfect scaling can again be explained by thetioreed
approximately additive structure of the solution which &etted by our adaptive sparse
grid algorithm and which results in a pure axis-structuréhaf corresponding adaptive
grid. Also the errors increase only slowly with the numbef dimensions by a factor of
roughlyd/d — 1 per additional dimension, in other words, linearlydnThis shows that
our adaptive procedure has very good scaling propertidsefipect to the dimension in
simple cases.

Note here that the main bottleneck in runtime for higher disiens is the error compu-
tation on the full grid and not the semi-Lagrangian spars& ggheme itself. The method
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(a) initial grid

I I I I I I 9 F
2 45 4 05 0 05 1 15 2 2 45 4 05 0 05 1 15 2

(c) resulting grid (d) resulting function with zero level
set

FIGURE5. Example 1fod = 2ande =5-10~*.

t=0 t=1

N(d) N(d)
d N erpe er? N@=1 d N eree. er? N(d=T)
2 517 6.08_4 7.50_4 2 393 7.12_3 1.20_9o
3 781 9.05_4 1.09_3 1.51 3 595 1.07_2 1.83_2 1.51
4 1,049 1.20_3 1.42_3 1.34 4 801 1.42_o 2.40_» 1.35
5 1,321 1.49_3 1.70_3 1.26 5 1,011 1.78_9 291_» 1.26
6 1,597 1.77_3 1.95_3 1.21 6 1,255 2.14_5 3.37_2 1.24

TABLE 3. Example 1, scaling behaviouz € d < 6) for initial data ¢ = 0)
and terminal datat(= 1), after K = 12 time steps, using = 5 - 10~* for the
adaptive procedure.

alone could actually be run in many more dimensions sinaits for thei-dimensional
case involves only abouttimes the cost of the one dimensional case for this speatl te
problem.

Remark 4.1 Notice that a spatially adaptive sparse grid represemtafia functionf; (z1)
that does not depend on the other variabigs . . , x4 will have points located only on the
x1 axis. Similarly, a function of the fornf;(xz1) + - - + fa(zq) will have a spatially
adaptive sparse grid representation located only o fhréncipal axis. This explains the
behavior in Figure 5, as well as for some initial data that laél used in Example 4 and 5
(see Figures 8 and 9, resp.).

Example 2. Next, we consider the following transport equation
ve + f(z) - Vo =0, t>0, ze€,
v(0,2) = p(z), zel,
whereQ = (—2,2)¢ andt = 0.5. In comparison to the first example the velocity figlid:)

is nowz-dependent and thus the solution has no longer an appradyzatditive structure.
We will assume that f is an inward pointing flow, i.e(— f(z))-v < 0, Vz € 99, wherev
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2
2 45 4 05 0 05 1t 15 2 2 45 4 405 0 05 1 15 2

(a) resulting grid (b) resulting function with zero level
set (green line)

(c) resulting grid (d) resulting zero level set

FIGURE6. Example 2 ford = 2andd = 3,e = 5-107%.

is the outward normal 02, such that the backward characteristics of the flow stag@si
the domairf2.2 Moreover, we choose the state dynamics as

f(@) = a(lz]]) fi(z),

3
wherea(r) = (max (1 - 1—T5, 0)) is a scalar function, angl (z) is a vector field cor-

responding to a rotation @&¢?, which is made precise in appendix A. The initial function
is taken asp(z) = z2. Since the characteristigg (—t) can be computed analytically (see
appendix), the exact solution is known. It is given by

u(t,z) = ¢ (yu(-1)) -

For the numerical scheme, we also use the analytical forfoulg, (—7) wherer is the
time step.

Note that the initial functionp(z) = z2 can be represented exactly by a sparse grid.
In Tables 4 and 5, we give the convergence results for dirmansi= 2 andd = 3,
respectively, observed at the terminal timme-= 0.5. Again, we roughly obtai. . ~ 1.
Thus, also for this non-smooth function we have a controheffinal error by a suitable
adjustment of the refinement parameieHowever, the number of grid points which are
employed for a given refinement threshold is now much largdrthe order with respect
to NV is worse than for the first example. This is due to the highealedity of the function
(see Figure 6) which also exhibits larger second mixed dévies. In higher dimensions
this effect grows, the facto% is about 5. We therefore need more and more grid
points, but we are still able to achieve reasonable acasatn particular we observe no
exponential scaling of the complexity with respectito

3Sincey£(—t) stays inQ2 for all z € 2 the boundary needs no specific consideration and for thisgbea
we could use the standard hat basis of Figure 3(a) as welketheve numerically observed the same accuracy
with roughly the same number of points for the standard andified basis of Figure 3, respectively.
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t=20.5

€ N eroo Qe,e  ON,e er2 Oc,e  ON,e

loc loc

8.00_3 281 244, 1.77_1

4.00_3 539 1.33-1 0.88 -0.93 9.61_2 088 -0.94
2.00_3 919 5.86_2 1.18 —1.54 4.09_> 123 -1.60
1.00_3 1,409 3.20_o 087 —1.41 198 o 1.04 -1.69
5.00_4 2,361 1.49_o 1.10 —-148 990_3 1.00 -1.35
2504 3,683 6.03_3 131 —2.04 441_3 1.17 -1.82
1.25_4 5,603 3.20_3 092 —-1.51 2.38_3 0.89 —147
6.25_5 8,531 1.69_3 0.92 —1.52 1.28_3 0.89 —1.47

TABLE 4. Example 2, convergence fdr= 2, terminal dataf = 0.5), after
K = 10 time steps.

t=20.5

€ N € Oc,e ON,e €12 Q¢,e ON,e

loc loc

8.00_3 1,297 3.75_1 1.15 4

4.00_3 2,507 2.26-1 073 —-0.76 6.09_2 0.92 -—-0.97
2.00_3 4,771 143_; 0.67 -0.72 3.53_2 0.79 —0.85
1.00_3 8451 7.01_o 1.03 -—-1.24 1.79_» 098 -—1.18
5.00_4 15,153 3.16_2 1.15 —-1.36 9.74_3 0.88 —1.04
2.50_4 25,213 163_2 096 —-1.31 5.27_3 089 —-1.21
1.25_4 42,553 7.37_3 1.14 —1.51 298_3 0.82 —1.09
6.25_5 72,267 4.06_3 086 —1.12 1.71_3 0.80 —1.05

TABLE 5. Example 2, convergence fdr= 3, terminal data# = 0.5), after
K = 10 time steps.

t=20.5
N(d
N erge er2 N(d(—)l)

loc

2 2,361 1.49_5 9.90_3

3 15,153 3.16_2 9.74_3 6.42
4 83,741 6.36_2 7.72_3 5.53
5 431,823 1.10-1 7.84_3 5.16

o

TABLE 6. Example 2, scaling behaviol2 € d < 5) for terminal dataf =
0.5), after K = 10 time steps, using = 5 - 10~ for the adaptive procedure.

Example 3. Now, we consider a nonlinear PDE example, the Eikonal eqoati
v+ ||[Vol| =0, t>0,z€eq,
v(0,2) = p(z), z€Q,
in Q = (—2,2)4. Note that this is a particular case of (1), since wittx,b) = b for
b€ B:= B(0,1),i.e. the unit ball, we haveiax,c g(o,1)(—f(z, b) - Vv) = || V].

To obtain an exact solution to compare with, we consider #eeg(z) = q(||z||)
whereq : Rt — R is a non-decreasing function. Then, we can showtthat

(30) v(t,z) = q((llzll = t)+)-
Here, we use
L s 2
Z)i=—(2"—r
q(z) 2r0( 0)
With Si(z) = {z € R?||lz[l2 < t} = B(w, t) we can show thab(t, z) = infycs, ) #(¥) = @(z*)
wherez* is a point ofR¢ such thatz* := arg mingeg, () Yl
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2 45 4 05 0 05 1 15 2 2 45 4 05 0 05 1 15 2

(a) resulting grid (b) resulting function with zero level
set

FIGURE7. Example 3fod =2,e =2-1073.

t=1

€ N €L Oee  ONe er2 Qe,e  ON,e

loc loc

8.00—3 261 1.27_4 1.30—1

2.00_3 705 341_o 095 —-132 324_> 1.00 -1.40
5.00—4 1,889 112, 080 -1.13 1.02_2 083 -1.17
1.25_4 4,745 2933 097 —-1.46 299_3 0.88 —1.33
3.13_5 11,153 8.75_4 087 —1.41 7.83_4 097 -—1.57
7.81_¢ 25477 2.19_4 100 -—-1.68 2144 093 -—1.57
1.95_¢ 57,641 6.24_5 090 —-1.54 6.30_5 0.88 —1.50
4.88_7 130,193 1.63_-5 097 -1.65 1.70_5 094 —-1.61

TABLE 7. Example 3, convergence fdr = 2, terminal datay = 1), after
K = 10 time steps.

t=0 t=1
N(d) N(d)
d N eLes. er2 N(a=1) d N eLes. ez Na=D
2 261 244_3 292_3 2 705 3.41_9 3.24_o
3 397 3.66_3 4.45_3 1.52 3 4,525 5.36_2 3.95_9 6.42
4 537 4.88_3 5.81_3 1.35 4 28281 6.63_2 4.73_2 6.25
5 681 6.10_3 6.98_3 1.27 5 246,665 T7.62_o 4.48_o 8.72

TABLE 8. Example 3, scaling behaviouz € d < 5) for initial data ¢ = 0)
and terminal datat(= 1) after K = 10 time steps, using = 2 - 10~ for the
adaptive procedure.

with o = 0.5, i.e. ¢ is chosen such thatz) = 0 for z = 9 and¢’(r9) = 1. Hence, the
zero level se{z | p(z) = 0} represents just the sphere of radiys

In the numerical scheme we now employ the known optimal path-7) = = — rﬁ
if |z|| > 7, andy,(—7) = 0 otherwise. Thus, no error can come from a discretization of
the continuous control and only interpolation errors frévd $L scheme can occur.

Since we have the same initial function as in the first exanjpé moved to the center,
we only give figures and results for= 1 here. We observe a similar order. ~ 1 for
d = 2 with respect ta but we now need more grid points, i.e. we obtain. ~ —3/2,
see Table 7. The resulting grid and function foe 1 are shown in Figure 7. Obviously,
the solution at timg = 1 cannot be represented by an adaptive grid with points only on
the axes like in Example 1. We now need to resolve the tramsif the function from a
flat region inside the zero level set to a steeper one outsidghermore, we have a non-
smooth function due to the) . in (30). This behaviour can however be handled well by
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our adaptive discretization approach. Note in particlHardparse grid effect away from
the area of non-smoothness in Figure 7.

The scaling behaviour is shown in Table 8. Although we nowaudiferent value foe,
we observe fot = 0 the same factord/(d)/N(d — 1) as in Table 3 for the first example,
where the same initial function was used. The scaling bela¥ort = 1 starts similar as
in Example 2, but gets somewhat worse with risihgvhich clearly shows that it depends
on the function to be represented. But, again, we do not ubsar exponential scaling
with raising number of dimensions.

Example 4.In this example we consider the HIB equation

(31a) v + Ibneaéc (Z b; P; - Vv) =0, t>0, z €,

(31b) o(0,2) = p(P'z), zeQ.

whered > 2, Q = (-2,2)4, andB := {b = (b, ...,bq), b; = £1} is a set o2 column
vectors, hence we ha&¥ possible controls, an&; denotes the-th column vector of a
given matrixP € R?*¢, The definition ofP and more details are given in appendix B. For
the initial function, we consider radially symmetric datér) := ¢(||z||) as in Example3.
Hence, due t*? = I, andv(0, z) = ¢(Pz), the zero level set @t= 0 is an ellipse in the
first two dimensions, see Figure 8(a). The exact solutioivisrgby

(32) v(t,z) = ¢ ((P);),

see the appendix for details. Thus, the zero level set at time 0.5 describes a par-
allelogram with rounded edges in the first two dimensions, Kgure 8(d), whereas, in
the other dimensions, it forms a rectangle with rounded sdiiote that we specifically
designed this example to show the advantage of our adapauses grid approach in sit-
uations where the function needs higher refinement in somemBions and only small
refinement in other dimensions.

For the numerical scheme we need to consider the explidispat

yo(-m) =z —7()_biP)=x—TPb

forall b € B. Here, the first two components £ take the four possible values(1, —2),
£(1,0), and the otherl — 2 values are given by+1,...,+1). Let us emphasize that
we now have to use an explicit minimization over all possttxﬁaectories{yg(—ﬂ for the
different actionsPb.

Since we are in a non-linear control setting, we have to reidenthe choice of the time
stepr, which now needs to depend enlt is known from the approximation properties of
regular grids that the error between the continuous salial its discrete approximation
depends on the time stepand the spatial errar;, in a mixed relation likeD(r + e /7),
see[2, 9, 24]. In our adaptive sparse grid setting we do nat hanesh sizg relating to the
discretization errog;,. Instead, we have a refinement constamthich controls the error
of our approximation. Therefore, to balancandr accordingly, we choose here= ¢ /e,
with constant = 1 in our case. This gives an overall error®@f\/c + ¢//¢) = O(\/¢).

A more detailed investigation of the relation between theresf the adaptive sparse grid
discretization and the time step size is warranted, buthéyoe scope of this paper.

In Figure 8 we show the initial and resulting grids as wellteslevel set ol fort = 0
andt = 0.5 for the two-dimensional case, and also the grids for thestlgiienensional case.
As can be seen in Figure 8(f) the resulting grid is essegttalb-dimensional, since the
rectangle-structure in the other dimensions can be repieddy an adaptive grid which
only has points on the axis in these coordinates. We alsoradbdleat a more diagonal
structure of the function is disadvantageous for a spatidegince one needs a substantial
number of points to represent such a diagonal formation bgallly refined sparse grid.
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t=0
€ N eLfgc Qc¢,e ON,e 5L12DC Oce,e ON,e
2.00_3 263 3.66_3 4.42_5
5.00_4 519 9.03_4 1.01 —2.06 1.10_3 1.01 —2.05
1.25_4 1,031 2.29_4 0.99 -2.00 2.75_4 1.00 -—2.01
3.13_5 2,055 5.72_5 1.00 —2.01 6.84_5 1.00 —2.02
7.81_¢ 4,101 1.43_5 1.00 -2.01 1.70_5 1.01 —2.02
1.95_¢ 8,199 357_¢ 1.00 —2.00 4.16_¢ 1.01 —2.03
t=0.5
€ K N eLfgc Oc,e ON,e eLL2m: Q¢,e ON,e
2.00_3 12 1,415 2.64_3 2.31_
5.00_4 23 3,217 1.65_1 0.34 —0.57 1.36_1 0.38 —0.64
1.25_4 45 7,529 9.10_2 043 —0.70 7.46_2 044 —0.71
3.13_5 90 16,675 4.82_5 0.46 —0.80 3.89_ 047 —0.82
7.81_¢ 179 36,967 2.53_o 0.47 —0.81 2.01_o 0.48 —0.83
1.95_¢ 358 80,537 1.28_5 049 —0.87 1.02_2 049 —0.87
TABLE 9. Example 4, convergence far = 2 for initial data ¢ = 0) and

terminal dataf = 0.5) with K’ = £ for varying time step size = /z.
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t=0
e N eLys,  Oee  ONe €2 Oee  ONe
2.00_3 399  4.88_3 5.95_3
5.00_4 783  1.19_3 1.02 -2.10 1.45_3 1.02 —2.09
1.25_4 1,551 3.05_4 098 —1.99 3.70_4 0.99 —2.00
3.13_5 3,087 7.62_5 1.00 -—2.01 9.24_5 1.00 —2.02
7.81_¢ 6,159 1.91_5 1.00 -2.01 2.30_5 1.00 —2.01
1.95_¢ 12,303 4.76_¢ 1.00 —2.01 5.49_¢ 1.03 —2.07
t=0.5
€ K N eLfgc Oc,e ON,e eLL2m: Q¢,e ON,e
2.00_3 12 1,523 2.59_; 2.20_1
5.00_4 23 3425 1.63_1 0.33 —0.57 1.27_; 0.40 —0.68
1254 45 7,935 9.04_2 043 -0.70 6.83_p 0.45 —0.74
3.13_5 90 17,467 4.81_5 0.46 —0.80 3.54_5 047 —0.83
7.81_¢ 179 38,535 2.52_5 047 —0.82 1.83_o 048 —0.84
1.95_¢ 358 83,653 1.28_2 049 —0.87 9.26_3 049 —0.88
TABLE 10. Example 4, convergence fér= 3, initial data ¢{ = 0) and terminal

data ¢ = 0.5) with K = L for varying time step size = /c.

d N erge e%‘i%c lefd(i)l)
2 16,675 4.82_5 4.82_9

3 17,467 4.81_5 4.81_» 1.05
4 18,263 4.79_9 4.79_9 1.05
5 19,063 4.78_2 4.78_2 1.04
6 19,867 - 4.76_o 1.04

TABLE 11. Example 4, scaling behaviour far< d < 6 for terminal data
(t = 0.5) with e = 3.125 - 10~° for the adaptive procedure add = 90 time
steps. Forl = 6, the error is only measured in the — x5 plane.
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2 15 4 05 0 05 1 15 272 2 —1‘5 ‘I —!;5 0 0‘5 ‘1 i‘ﬁ 272
(a) initial function with zero level (b) initial grid ford = 2
set ford = 2

2 15 4 05 0 05 1 15 272 2 —1‘5 ‘I —!;5 0‘-“05 115 272
(d) resulting function with zerde) resulting grid ford = 2 (f) resulting grid ford = 3
level set ford = 2

FIGURES. Example 4 ford = 2 andd = 3, e = 3.125 - 10~°.

Results for the casé = 2 andd = 3 are given in Tables 9 and 10, respectively. The
initial grid shows a convergence rate as in the earlier exaspince the ellipsoidal struc-
ture has a form similar to the circle. As expected, the caymece order at = 0.5 is
now different due to the need for different time steps. Weeolesthe predicted order of
0e.e ~ 0.5 for the refinement constaatwhich controls our discretization error. For the
number of grid pointsV we roughly observe an order gf; . ~ —0.8.

The scaling behaviour is displayed in Table 11, up to dinr@mngi= 6. Note again that
the error computation is the most time consuming part of tin@erical procedure. Be-
cause it allows computationally cheap measurements irehijimensions we additionally
estimated thd.*°-error just for ther; — x5 plane and denoted the result byw The re-
duction to ther; — x5 plane is justified in this example, as well as the followmgpa;mce
the zero-level set in this plane reflects the dominant beladf the function at the flnal
time, see Figures 8 and 9. Note that as long we could comptiteshimrse .~ ande2d
they are here the same for the resulting function-at0.5. As can be expected from ‘the
picture of the grid in three dimensions, more dimensiong slifhtly increase the number
of points since in the other dimensions only grid points anakes are employed.

Example 5. At last, we consider the following problem with mixing frant

(33a) v + rgleaé( <Z b; P; - V’U) =0, t>0, 2,

(33b) v(0,z) = min(p1 (P '), 2(P'2)), z€Q,

with d > 2, Q = (=2,2)%, p1(2) := q(||z — r||) andps(z) := q(||z — s||), andq as in
Example3. Here,r, s are the two points iiR? defined byr := (0.7,0.3,0,...,0) and
s := —r. The matrixP € R%*? is an orthogonal matrix, and as in Example/%,denotes
the j-th column vector of? andB = {b = (by,...,bq)", b; = £1}. The definition ofP

and more details are given in the appendix C.
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Lo - mw s oo

2 —1‘5 ‘1 —0‘5 0 U‘S ‘I 1‘5 272 2 15 1 05 0 05 1 15 272
(a) overlay of both initial (b) initial function with zero level (c) initial zero level set forl = 3
grids,d = 2 set ford = 2

]

2
2 445 1 05 0 05 1 15 2

2 ‘—15"—1 050 65 115 272
(d) overlay of both result- (e) resulting function with zero (f) resulting zero level set faf = 3
ing grids,d = 2 level set ford = 2

FIGUREO. Example 5fod = 2andd =3, a = &, e =5- 1074, at time
= 0infigures (a), (b), (c), and time= 0.5 in figures (d), (e) and (f).

The exact solution here is

v(t,z) = min (¢ (PT(z - 1));) ¢ (PT (2~ 5))7)) -

In the first two dimensions the zero level set at time- 0.5 describes the intersection
of two rotated squares with rounded edges, in the other diroea the level set forms a
square with rounded edges, see Figure 9.

In this example, the initial data and the solution correspiorthe mixing of two fronts
and therefore are much less regular than in the previous @ramWe numerically ob-
served that the direct application of our adaptive SL-SGsuhfrom Section 3.1 is not
efficient for dimensiong > 3 in this case. Hence, we now apply the generalized SL-SG
scheme as described in Section 3.2 which is better suitedhtarof the form (33b).

For the generalized scheme, we employ two separate gridea€b initial datap;, i =
1,2, we apply the SL-SG scheme and use the explicit paths ) = z — 7>, 0:P) =
z—7Pbforallb € B. Then, the minimum of both resulting functions is taken ttagbthe
solution at time. The advantage of this approach is that the (costly) diegotasentation
due to the discontinuity of the gradient of thén-function is avoided.

We give results for the two- and three-dimensional case bieTa2 and Table 13, re-
spectively. Here we only show the results for the termirmakti the results fot = 0 are
equal to the ones from Example 1, but with twice the numberaifits. As before, we
observe the predicted order @f . ~ 0.5 for the convergence with respectt@and roughly
on,e ~ —0.8 with respect taV.

The scaling behaviour is analyzed in Table 14, this time intai dimensions. We
observe that the error, the complexity, and the scalingyiebabehave quite well and are
similar to Example 4.
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€ K N eroo Qe,e  ON,e er2 Oc,e  ON,e

loc loc

2.00_3 12 2,192 9.43_» 5.75_2

5.00_4 23 5,560 344_o 0.73 —-1.08 2.52_5 0.60 —0.89
1254 45 13,132 1.83_o 0.45 —-0.73 1.26_2 0.50 -0.81
3.13_5 90 31,046 8.89_3 052 —-0.84 6.44_3 0.48 -—0.78
781_¢ 179 71,874 424_3 053 —-0.88 3.22_3 0.50 —0.82

TABLE 12. Example 5, convergence fdr= 2, terminal data# = 0.5) with
K= ﬁ for varying time step size = \/e.

€ K N €roo Oc,e ON,e €r2 Q¢,e ON,e

loc loc

2.00_3 12 2,408 8.91_o 6.17_2

5.00_4, 23 5976 4.13_2 055 —-0.85 2.66_2 0.61 —0.92
1.25_4 45 13,944 2.18_5 0.46 —-0.76 1.33_2 0.50 —0.82
3.13_5 90 32,630 1.06_2 0.52 —-0.85 6.66_3 0.50 —0.81
781_¢ 179 75,010 5.08_3 0.53 -0.88 3.37_3 049 —-0.82

TABLE 13. Example 5, convergence fér= 3 for terminal dataf = 0.5) with
K= % for varying time step size = +/e.

d N ep el with
2 5560 3.44_5 3.44_o

3 5,976 4.13_2 3.61_2 1.07
4 6,400 4.83_2 3.78_2 1.07
5 6,832 5.53_2 3.95_2 1.07
6 72712 -  412_,  1.06
7 7,720 - 4.29_o 1.06
8 8,176 - 4.46_o 1.06

TABLE 14. Example 5, scaling analysis 2r< d < 8 for terminal data{ =
0.5) with e = 5 - 10~ for the adaptive procedure add = 23 time steps. For
d > 6, for the same reasons as in Example 4, the error is only megsuthe
x1 — x2 plane.

5. CONCLUSION

We presented and implemented a new spatially adaptive lsagrangian sparse grid
scheme and tested it on a series of linear and nonlineardapendent Hamilton-Jacobi
Bellman equations. In particular, we focused on the zerellset of the solution. The
adaptive sparse grid is able to handle the representatithredfont with reasonable preci-
sion in higher dimensions. This was tested u@ te 8 dimension in this work. From the
numerical point of view, two main ingredients are crucial doir new approach: First, the
adaptivity of the employed sparse grid, and, second, aadsmiindary treatment allow to
keep the number of necessary sparse grids points relatiuedyl. Furthermore we should
emphasize that the sparse grid effect only works propetheifdata has some potentially
lower-dimensional structure or is roughly axis-aligned, after a suitable transformation.

As noted, the main computational burden in our SL-SG schertiesievaluation of the
adaptive sparse grid function. It was shown recently [12} thsing a specific reordering
of the steps of the point evaluations together with a GPlethgmarallelisation one can
achieve speed-ups of almost 50 in comparison to the stamdaidmentation of adaptive
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sparse grids. This approach can also be employed in our schachcould be used to
improve the runtime significantly.

Note that, for the moment, the proposed scheme neither basdhotony property that
would give convergence towards the viscosity solution, mas provable stability as far
as we know. However, we think that this initial work is an em@ging step towards the
construction of related schemes for the solution of HIB &#gusa in higher dimensions
that could remedy these drawbacks.

Let us also mention that extensions of the proposed schemere general situations
are possible. For instance a sparse grid SL scheme can Ighftvewardly defined for
HJB equations with an additional cost term.

APPENDIXA. DETAILS FOREXAMPLE 2

In order to define the vector fielfl (), let us first define two vectors, v of R? as follows:
w=(1,0,...,00" and v=(0,1,...,1)"/V/d—1.

We then denote byl the operator such that(«, 3) = (-8, «) in the basiqu, v), that is,A(au +
Bv) = —pu + av. We now decompose a vecterasz = Pz + (x — Pz), wherePx = (z,u)u +
(z,v)u is the projection on the plariéect(u, v). We have also

Z?:2xi
d—1 "~

Pz = (z1,y,..., y)T7 wherey =

We can now defing (z) in the following way:
fi(z) = A(Pz) = —(z,v)u + (z, w)v.
We then have
Ya(—t) = Bta(jal) (Pz) + 2 — P,

where the operataRy is represented by the following rotation matrix in the bdsisv)

(% ")

Hence, to compute, (—t) we have, using the notatigh= —ta(||z||),
RoPz = Ry ((L wu + (z, y)y)
:<cose(gu —sm@mv) (sm@mu)-i—cos@(:c v))v
(cos fz1 — sinf(z, v))g + | sinfz1 + cos 0(@,2))2
and thus
z+ ( cosf — 1)z — sinf(z, v))g—i— (sin@ml + (cos 6 — 1)(@@))2
where(z,u) = z, and(z,v) = \/% > i Ti-

APPENDIXB. DETAILS FOREXAMPLE 4

We consider the equation

(34a) Vet Ve = Ve |+ [ = v [+ D fvay| =0, t>0, zeq,

(34b) v(0,2) = w(z) = (P 'z), zeQ
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whered > 2, Q = (—2,2)%, and P is the matrix defined by

1 0 0 ... ... 07
-1 -1 0 ... ... 0

0 0 1

(35) pP= 0
L 0 ... 0 1]

We denote byP; the j-th column vector ofP, i.e. P = [Py,..., P4 andp(z) := q(||z]|) as
in Example3. Then equation (34a) is equivalent to the HIB equation (3Ta)obtain the exact
solution for this problem, le¢ be the new coordinate vectors&f in the basig(P;, . . ., Ps) such
thatz = P¢, and letu(t, ) := v(t, z) = v(t, P). Then we havé,u = Vv (9¢,z) = Vyv- P
Hence,u is a solution ofus + 3°,_, , |ug,| = 0fort > 0 andz € R%, andu(0,£) = ¢(€). The
solution is given byu(t, &) = minyés;(g) ©(y), whereS; (¢) := {y, |ly — £l < t}. Therefore,
u(t,§) = (&) whereg” := argmin{d(0,y),y € S:(£)} is the orthogonal projection af on
the convex sef; (). SincesS;(§) is thed-dimensional bo],_, ,[& — t,& + t], the projection
£ = (&) can be computed component-wise and we tgye= min(max(0, & —t), & +t). This
formula will now be denoted by
&, = min(max(0,§ — 1), § +1).

Finally we obtain the exact solution
(36) v(t,z) = u(t,€) = (&) = ¢ (P'2)7) = ¢ (P2)i).

APPENDIXC. DETAILS FOREXAMPLE 5

We consider
(37a) Ve 4 | COS Q- Vg +SIN Q- Vgp | + | — SIN - Uy + COS Q- gy |
+ Z |vl‘i|:07 t207£€Q7

i=3,...,d
(37b) v(0,z) = min(p1(P™'z), p2(P~'z)), zeQ,
whered > 2, Q = (—2,2)%, and in this examplé” is the matrix defined by

[cosa —sina 0 ... ... 07

sina cosaa O ... ... O
0 0 1

(38) P = 0

L O e 0 1]

Let againP; denote thej-th column vector ofP andB = {b = (b1,...,ba)", b = £1}.
Then, equation (37a) is equivalent to the HIB equation (33&te that sincep(z) = q(||z||)
and P orthogonal, and withp1(z) := ¢(z — r) ande2(z) = ¢(z — s), we havev(0,z) =
min (1 (), 2(z)) here. The exact solution for each initial data < = 1,2 is obtained as in the
previous example, and therefore

o(t,z) = min (¢ (P~ (z —1))7), ¢ (P (z—9))r)) (with P~" = PT)
holds.
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