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ON THE CONSTRUCTION OF SPARSE TENSOR PRODUCT SPACES

MICHAEL GRIEBEL AND HELMUT HARBRECHT

Abstract. Let Ω1 ⊂ Rn1 and Ω2 ⊂ Rn2 be two given domains and consider on each domain

a multiscale sequence of ansatz spaces of polynomial exactness r1 and r2, respectively. In this

paper, we study the optimal construction of sparse tensor products made from these spaces. In

particular, we derive the resulting cost complexities to approximate functions with anisotropic

and isotropic smoothness on the tensor product domain Ω1×Ω2. Numerical results validate our

theoretical findings.

1. Introduction

Many problems in science and engineering lead to problems which are defined on the tensor

product of two domains Ω1 ⊂ R
n1 and Ω2 ⊂ R

n2 . Examples arise from the second moment

analysis of partial differential domains with stochastic input parameters [12, 13, 22, 20], two-scale

homogenization [1, 4, 14], radiosity models and radiative transfer [23], or space-time discretizations

of parabolic problems [9, 19].

A straightforward discretization uses tensor products of all basis functions from suitable finite

dimensional ansatz spaces V
(1)
J and V

(2)
J which are defined on each domain separately. This leads

to the full tensor product space V
(1)
J ⊗ V

(2)
J . However, in general, the full tensor product space

contains too many degrees of freedom such that desirable realistic simulations are still beyond

current computing capacities. For this reason, the efficient discretization of functions on product

domains is an important task in numerical analysis and scientific computing.

In the present paper, we focus on the construction of sparse tensor product spaces, also known

as sparse grids [2, 24]. Starting point are multilevel decompositions of the ansatz spaces

V
(i)
J =W

(i)
0 ⊕W

(i)
1 ⊕ · · · ⊕W

(i)
J , i = 1, 2,

which can be constructed via hierarchical bases, interpolets or wavelet-like bases. From this, the

regular sparse tensor product space is defined according to

V̂ reg
J =

⊕

j1+j2≤J

W
(1)
j1

⊗W
(2)
j2
,

see e.g. [2, 8, 10, 24]. Its approximation power is nearly as good as that of the corresponding full

tensor product space if the functions to be approximated provide additional smoothness in terms

of bounded mixed derivatives. The regular sparse grid is optimal with respect to the L2-norm if

both domains have the same dimension and are equipped with the same type of functions.

Nevertheless, to the best of our knowledge, it has not been systematically studied in the litera-

ture what the most efficient construction of sparse tensor product spaces is if the spatial dimension

of the underlying domains or the polynomial exactness (and thus the approximation power) of the
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2 MICHAEL GRIEBEL AND HELMUT HARBRECHT

ansatz spaces differ. Here, the following questions arise: Should the degrees of freedom or the ap-

proximation power of the univariate ansatz spaces be equilibrated? Or is it preferable to construct

the sparse tensor product space such that an equilibrated cost-benefit rate (see [2]) is guaranteed?

In the present paper, we will answer these questions for the case that the approximation error

is measured in the L2(Ω1×Ω2)-norm. Then, the sparse tensor product spaces contain all products

W
(1)
j1

⊗W (2)
j2

with indices (j1, j2) contained inside a specific triangular subset of the j1-j2 plane with

base dependent on n1, n2, r1, r2. Here, besides the approximation error of functions from Sobolev

spaces of dominating mixed smoothness, we also study the approximation error of functions from

isotropic Sobolev spaces.

In case of smooth functions, there is a whole range of sparse tensor product spaces which possess

the same optimal convergence rate. However, in case of functions with limited regular or mixed

Sobolev smoothness, it turns out that the sparse tensor product space, which equilibrates the

number of degrees of freedom (see Section 3), is superior to all the other sparse tensor product

spaces under consideration.

To keep the discussion simple, we restrict ourselves to two-fold tensor product domains Ω1×Ω2

in this paper. In practice, also problems on arbitrary tensor product domains Ω1 ×Ω2 × · · · ×Ωm

may appear, see e.g. [2, 11, 16, 17, 21, 22, 18]. We believe that our results can be generalized to

such m-fold tensor product domains which, however, is rather technical and not straightforward.

This will therefore need future research (see also the concluding remarks in Section 8).

The remainder of this paper is organized as follows. In Section 2, we specify the requirements

of the multiscale hierarchies on each subdomain. Then, in Section 3, we construct general sparse

tensor product spaces. In Section 4, we study their properties. Section 5 is dedicated to the com-

parison of the cost complexities for the approximation of functions with anisotropic and isotropic

smoothness. In Section 6, we provide the results of our numerical experiments. They are in good

agreement with the presented theory. Finally, in Section 7, we carry over our results from the

L2(Ω1 × Ω2)-error estimate to the more general Hq1,q2
mix (Ω1 × Ω2)-error estimate.

Throughout this paper, the notion “essential” in the context of complexity estimates means “up

to logarithmic terms”. Moreover, to avoid the repeated use of generic but unspecified constants,

we denote by C . D that C is bounded by a multiple of D independently of parameters which C

and D may depend on. Obviously, C & D is defined as D . C, and C ∼ D as C . D and C & D.

2. Approximation on the subdomains

Let Ω ⊂ R
n be a sufficiently smooth, bounded domain. We consider a nested sequence of finite

dimensional subspaces

(2.1) V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ · · · ⊂ L2(Ω),

which consists of piecewise polynomial ansatz functions Vj = span{ϕj,k : k ∈ ∆j} (∆j denotes a

suitable index set), such that dimVj ∼ 2jn and

(2.2) L2(Ω) =
⋃

j∈N0

Vj .

Since we will use the spaces Vj for the approximation of functions, we assume that the approx-

imation property

(2.3) inf
vj∈Vj

‖u− vj‖L2(Ω) . hsj‖u‖Hs(Ω), u ∈ Hs(Ω),
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holds for 0 ≤ s ≤ r uniformly in j. Here we set hj := 2−j , i.e., hj corresponds to the width of

the mesh associated with the subspace Vj on Ω. Note that the integer r refers to the polynomial

exactness, that is the maximal order of polynomials which are locally contained in the space Vj .

We now introduce a wavelet basis associated with the multiscale analysis (2.1) and (2.2) as

follows. The wavelets Ψj := {ψj,k : k ∈ ∇j}, where ∇j := ∆j \ ∆j−1, are the bases of the

complementary spaces Wj of Vj−1 in Vj , i.e.,

Vj = Vj−1 ⊕Wj , Vj−1 ∩Wj = {0}, Wj = span{Ψj}.

Recursively we obtain

VJ =

J⊕

j=0

Wj , W0 := V0,

and thus, with

ΨJ :=

J⋃

j=0

Ψj, Ψ0 := Φ0,

we get a wavelet basis in VJ . A final requirement is that the infinite collection Ψ :=
⋃

j≥0 Ψj

forms a Riesz basis of L2(Ω). Then, there exists also a biorthogonal, or dual, wavelet basis Ψ̃ =⋃
j≥0 Ψ̃j = {ψ̃j,k : k ∈ ∇j} which defines a dual multiscale analysis, see e.g. [5] for further details.

In particular, each function f ∈ L2(Ω) admits the unique representation

(2.4) f =

∞∑

j=0

∑

k∈∇j

(f, ψ̃j,k)L2(Ω)ψj,k.

With the definition of the projections

Qj : L
2(Ω) →Wj , Qjf =

∑

k∈∇j

(f, ψ̃j,k)L2(Ω)ψj,k

the atomic decomposition (2.4) gives rise to the multilevel decomposition

f =

∞∑

j=0

Qjf.

In particular, for any f ∈ Hs(Ω), the approximation property (2.3) induces the estimate

(2.5) ‖Qjf‖L2(Ω) . 2−js‖f‖Hs(Ω), 0 ≤ s ≤ r.

3. Sparse tensor product spaces

Consider now two domains Ω1 ⊂ R
n1 and Ω2 ⊂ R

n2 with n1, n2 ∈ N. We aim at the approxi-

mation of functions in L2(Ω1 × Ω2). To this end, we assume individually for each subdomain Ωi,

i = 1, 2, the multiscale analyses

V
(i)
0 ⊂ V

(i)
1 ⊂ V

(i)
2 ⊂ · · · ⊂ L2(Ωi), V

(i)
0 = span{Φ(i)

j }, i = 1, 2,

with associated complementary spaces

V
(i)
j = V

(i)
j−1 ⊕W

(i)
j , V

(i)
j−1 ∩W

(i)
j = {0}, W

(i)
j = span{Ψ(i)

j }.

Furthermore, let us denote the polynomial exactnesses of the spaces V
(1)
j and V

(2)
j by r1 and r2,

respectively.
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In this paper, we study the special sparse tensor product space1

(3.6) V̂ σ
J :=

⊕

j1σ+
j2
σ ≤J

W
(1)
j1

⊗W
(2)
j2

for an arbitrary parameter σ > 0. In particular, the index pairs (j1, j2) ∈ N0 ×N0 of the included

tensor product spaces W
(1)
j1

⊗W
(2)
j2

satisfy the relations

0 ≤ j1 ≤ 1

σ
J − 1

σ2
j2, 0 ≤ j2 ≤ σJ − σ2j1.

Note that this ansatz would be not optimal if we would be interested in approximation errors with

respect to norms other than the L2(Ω1 × Ω2)-norm. We would then no longer obtain spaces with

triangular index set but so-called generalized sparse grid spaces [2, 7, 6, 8] with more complicatedly

shaped index sets which exhibit no longer a linear relation between j1 and j2. For example, the

choice of the H1(Ω1 ×Ω2)-seminorm would lead to the so-called energy based sparse grids, see [2].

Results for other norms and smoothness classes can be found in [8].

Here, we restrict ourselves to the L2(Ω1 ×Ω2)-norm but consider Ω1 and Ω2 with n1 and n2 in

general not equal and possibly equipped with different polynomial ansatz spaces of exactness r1

and r2, respectively.

Reasonable choices of the parameter σ could then be as follows.

• We may equilibrate the degrees of freedom in all tensor product spacesW
(1)
j1

⊗W (2)
j2

whose

indices (j1, j2) satisfy j1σ + j2/σ = J . This choice leads to σ =
√
n1/n2.

• The sparse tensor product space V̂ σ
J (3.6) can be rewritten as

V̂ σ
J =

∑

j1σ+j2/σ=J

V
(1)
j1

⊗ V
(2)
j2
.

Then, it can be seen easily that the choice σ :=
√
r1/r2 equilibrates the approximation

power of the contained tensor product spaces V
(1)
j1

⊗ V
(2)
j2

.

• Following the idea of an equilibrated cost-benefit rate (see [2]), we get the condition

2j1(n1+r1) · 2j2(n2+r2) !
= 2J·const.

Then, by choosing as const =
√
(n1 + r1)(n2 + r2) we arrive at σ =

√
n1+r1
n2+r2

.

In Figure 3.1, we display the index sets (j1, j2) which belong to the associated sparse tensor

product spaces V̂ σ
J for these three cases of σ.

4. Properties of the sparse tensor product spaces

In the following section, we present results for the approximation of functions in the sparse

tensor product spaces V̂ σ
J with arbitrary σ > 0. First, we count the degrees of freedom which are

contained in these spaces.

Theorem 4.1. The dimension of the sparse tensor product space

V̂ σ
J =

∑

σj1+j2/σ≤J

W
(1)
j1

⊗W
(2)
j2

1Here and in the following, the summation limits are in general no natural numbers and must of course

be rounded properly. We leave this to the reader to avoid cumbersome floor/ceil-notations.
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Figure 3.1. The index sets (j1, j2) of the spaces V̂ σ
J with the same intersection

point j on the j1-axis for the three particular choices of σ.

is essentially O(2J max{n1/σ,n2σ}). More precisely, it holds

(4.7) dim V̂ σ
J .




2J max{n1/σ,n2σ}, if n1/σ 6= n2σ,

2Jn2σJ, if n1/σ = n2σ.

Proof. Since dim
(
W

(1)
j1

⊗W
(2)
j2

)
∼ 2j1n1+j2n2 , it holds

dim V̂ σ
J ∼

J/σ∑

j1=0

σJ−σ2j1∑

j2=0

2j1n1+j2n2 . 2Jn2σ

J/σ∑

j1=0

2j1(n1−n2σ
2).

Now, if n1/σ < n2σ, the exponent in the sum is always negative. This implies

(4.8) dim V̂ σ
J . 2Jn2σ.

If n1/σ > n2σ, the exponent is always positive and it follows that

(4.9) dim V̂ σ
J . 2Jn2σ2J/σ(n1−n2σ

2) = 2Jn1/σ.

In the case of n1/σ = n2σ we obtain

(4.10) dim V̂ σ
J . 2Jn2σ

J/σ∑

j1=0

1 . 2Jn2σ
J

σ
.

The combination of (4.8)–(4.10) yields the desired result. �

Remark 4.2. (i) Note that the constant in estimate (4.7) depends on the particular choice of σ.

(ii) Estimate (4.7) is sharp since it holds dimW
(1)
J/σ ∼ 2Jn1/σ whereas dimW

(2)
σJ ∼ 2Jn2σ. Thus,

we also have the lower bound 2J max{n1/σ,n2σ}.

(iii) The full tensor product space V
(1)
J/σ ⊗ V

(2)
Jσ consists of 2J(n1/σ+n2σ) degrees of freedom.

In view of just optimal cost we would get n1/σ = n2σ, that is σ =
√
n1/n2, from balancing the

terms in max{n1/σ, n2σ}. But this choice of V̂ σ
J needs not to give us necessarily the best rate of
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approximation yet. Therefore, our next result is concerned with the rate of approximation in the

sparse tensor spaces V̂ σ
J . To this end, for s1, s2 ≥ 0, we introduce the anisotropic Sobolev spaces

Hs1,s2
mix (Ω1 × Ω2) := Hs1(Ω1)⊗Hs2(Ω2).

Obviously, the highest possible rate of convergence is attained in the space Hr1,r2
mix (Ω1 × Ω2).

Therefore, in the following theorem, we restrict ourselves without loss of generality to s1 ≤ r1 and

s2 ≤ r2.

Theorem 4.3. Let 0 < s1 ≤ r1, 0 < s2 ≤ r2 and f ∈ Hs1,s2
mix (Ω1 × Ω2). Then, the approximation

(4.11) f̂J =
∑

j1σ+
j2
σ ≤J

(
Q

(1)
j1

⊗Q
(2)
j2

)
f ∈ V̂ σ

J

satisfies

(4.12) ‖f − f̂J‖L2(Ω1×Ω2) .




2−J min{s1/σ,s2σ}‖f‖Hs1,s2

mix (Ω1×Ω2), if s1/σ 6= s2σ,

2−Js1/σ
√
J‖f‖Hs1,s2

mix (Ω1×Ω2)
, if s1/σ = s2σ.

Proof. It follows by standard tensor product arguments from (2.5) that

‖f − f̂J‖2L2(Ω1×Ω2)
.

∑

j1σ+
j2
σ >J

∥∥(Q(1)
j1

⊗Q
(2)
j2

)
f
∥∥2
L2(Ω1×Ω2)

.
∑

j1σ+
j2
σ >J

2−2(s1j1+s2j2)‖f‖2Hs1,s2
mix (Ω1×Ω2)

.

Now, we split the index set

I :=

{
(j1, j2) : j1σ +

j2
σ
> J

}

into two disjoint sets I = I1 ∪ I2 given by

I1 :=

{
(j1, j2) : 0 ≤ j1 ≤ J

σ
, Jσ − j1σ

2 < j2

}
,

I2 :=

{
(j1, j2) :

J

σ
< j1, 0 ≤ j2

}
.

Thus, we get

‖f − f̂J‖2L2(Ω1×Ω2)

.

{ J/σ∑

j1=0

∞∑

j2=Jσ−j1σ2+1

2−2(s1j1+s2j2) +

∞∑

j1=J/σ+1

∞∑

j2=0

2−2(s1j1+s2j2)

}
‖f‖2Hs1,s2

mix (Ω1×Ω2)

.

{ J/σ∑

j1=0

2−2j1(s1−s2σ
2)−2Js2σ +

∞∑

j1=J/σ+1

2−2s1j1

}
‖f‖2Hs1,s2

mix (Ω1×Ω2)

.

{ J/σ∑

j1=0

2−2j1(s1−s2σ
2)−2Js2σ + 2−2J

s1
σ

}
‖f‖2Hs1,s2

mix (Ω1×Ω2)

= 2−2Js2σ

{ J/σ∑

j1=0

2−2j1σ(
s1
σ −s2σ) + 2−2J(

s1
σ −s2σ)

}
‖f‖2

H
s1,s2
mix (Ω1×Ω2)

.

To obtain an estimate for this expression, we again distinguish three cases.
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In the case s1/σ < s2σ, we find

‖f − f̂J‖2L2(Ω1×Ω2)
. 2−2Js2σ

{
2−2J(

s1
σ −s2σ) + 2−2J(

s1
σ −s2σ)

}
‖f‖2

H
s1,s2
mix (Ω1×Ω2)

. 2−2J
s1
σ ‖f‖2Hs1,s2

mix (Ω1×Ω2)
.

If s1/σ > s2σ, we conclude that

‖f − f̂J‖2L2(Ω1×Ω2)
. 2−2Js2σ

{
1 + 1

}
‖f‖2Hs1,s2

mix (Ω1×Ω2)

. 2−2Js2σ‖f‖2
H

s1,s2
mix (Ω1×Ω2)

.

Finally, if s1/σ = s2σ, we have

‖f − f̂J‖2L2(Ω1×Ω2)
. 2−2Js2σ

{ J/σ∑

j1=0

1 + 1

}
‖f‖2Hs1,s2

mix (Ω1×Ω2)

. 2−2Js2σ
J

σ
‖f‖2

H
s1,s2
mix (Ω1×Ω2)

.

This completes the proof. �

Remark 4.4. (i) The constant in estimate (4.12) depends again on the particular choice of σ.

(ii) As before, one readily verifies that the estimate (4.12) is essentially sharp. Nevertheless, if

s1 < r1 and s2 < r2, then the factor
√
J for the case s1/σ = s2σ in (4.12) can be removed by

using more sophisticated estimates, see [10, 21].

(iii) In the full tensor product space V
(1)
J/σ ⊗ V

(2)
Jσ , we obtain the error estimate

inf
fJ∈V

(1)

J/σ
⊗V

(2)
Jσ

‖f − fJ‖L2(Ω1×Ω2) . 2−J min{s1/σ,s2σ}‖f‖
H

s1,0

mix (Ω1×Ω2)∩H
0,s2
mix (Ω1×Ω2)

.

This gives, under the smoothness assumptions of Theorem 4.3, essentially the same rate of con-

vergence as in (4.12).

By combining Theorems 4.1 and 4.3 we can express the convergence rate in terms of the number

of degrees of freedom N := dim V̂ σ
J . This gives us the cost complexity of approximating functions

in the sparse tensor product spaces V̂ σ
J .

Corollary 4.5. Let 0 < s1 ≤ r1, 0 < s2 ≤ r2 and f ∈ Hs1,s2
mix (Ω1 × Ω2). Furthermore, denote by

N := dim V̂ σ
J the number of degrees of freedom in the sparse tensor product space V̂ σ

J and set

α :=
min{s1/σ, s2σ}
max{n1/σ, n2σ}

.

If n1/σ 6= n2σ, then the approximation (4.11) in V̂ σ
J produces the following convergence rate in

terms of the degrees of freedom N :

‖f − f̂J‖L2(Ω1×Ω2) .




N−α‖f‖Hs1,s2

mix (Ω1×Ω2)
, if s1/σ 6= s2σ,

N−α
√
logN‖f‖Hs1,s2

mix (Ω1×Ω2)
, if s1/σ = s2σ.

If n1/σ = n2σ, we have

‖f − f̂J‖L2(Ω1×Ω2) .




N−α(logN)α‖f‖Hs1,s2

mix (Ω1×Ω2)
, if s1/σ 6= s2σ,

N−α(logN)α+
1
2 ‖f‖Hs1,s2

mix (Ω1×Ω2)
, if s1/σ = s2σ.
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Proof. If n1/σ 6= n2σ we have N ∼ 2J max{n1/σ,n2σ} due to (4.7). Hence, it holds

N−α = N
− min{s1/σ,s2σ}

max{n1/σ,n2σ} ∼ 2−J min{s1/σ,s2σ}

which, together with (4.12), yields the first error estimate.

If n1/σ = n2σ, then the sparse tensor product space V̂ σ
J contains N ∼ 2Jn2σ = 2J min{n1/σ,n2σ}J

degrees of freedom. Consequently, by noting that J . logN , we obtain from (4.12) the estimate

inf
f̂J∈V̂ σ

J

‖f − f̂J‖L2(Ω1×Ω2) .

(
N

logN

)−α

‖f‖Hs1,s2
mix (Ω1×Ω2)

provided that s1/σ 6= s2σ.

In case of s1/σ = s2σ, the additional factor
√
N ∼

√
log(N/J) .

√
log(N) needs to be inserted

as a multiplicative factor. This completes the proof. �

5. Discussion of the results

5.1. Maximal regularity. In Corollary 4.5 we computed the cost complexities when approxi-

mating functions from Hs1,s2
mix (Ω1 × Ω2) in the sparse tensor product spaces V̂ σ

J with arbitrary

σ > 0 and for 0 < s1 ≤ r1 and 0 < s2 ≤ r2. Now, we derive the cost complexity needed for the

representation of a given function f ∈ Hr1,r2
mix (Ω1 × Ω2) with maximal regularity, i.e., for s1 = r1

and s2 = r2. Note that related results have been computed in [3, 9] for the particular situation of

space-time discretizations of parabolic problems (i.e., n1 = 1, n2 ≥ 1).

In the following lemma we exclude the case r1
n1

= r2
n2

to ensure n1

σ 6= n2σ and r1
σ 6= r2σ.

Lemma 5.1. Assume that r1
n1

6= r2
n2

and let σ be of the form

(5.13) σ =

√
(1− λ)n1 + λr1
(1− λ)n2 + λr2

, λ ∈ (0, 1).

Then, the cost complexity to approximate a function f ∈ Hr1,r2
mix (Ω1 × Ω2) in the sparse tensor

product spaces V̂ σ
J is

(5.14) O
(
N

−min
{

r1
n1

,
r2
n2

})
.

Proof. Assume that r1
n1
< r2

n2
. Then, due to the inequalities

r1
(
(1− λ)n2 + λr2

)
< r2

(
(1− λ)n1 + λr1

)
,

n1

(
(1− λ)n2 + λr2

)
> n2

(
(1 − λ)n1 + λr1

)
,

it follows that

min
{r1
σ
, r2σ

}
=
r1
σ

and max
{n1

σ
, n2σ

}
=
n1

σ
.

Analogously, in the case r1
n1
> r2

n2
, it holds

min
{r1
σ
, r2σ

}
= r2σ and max

{n1

σ
, n2σ

}
= n2σ.

Consequently, from Corollary 4.5, for s1 = r1 and s2 = r2, the cost complexity is

O
(
N

− min{r1/σ,r2σ}

max{n1/σ,n2σ}

)
= O

(
N

−min
{

r1
n1

,
r2
n2

})
.

�
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-

min
{
r1
r2
, n1

n2

}
max

{
r1
r2
, n1

n2

}
0

σ2

Figure 5.2. The optimal convergence rate is achieved for all σ2 which are in

the interval
(
min

{
r1
r2
, n1

n2

}
,max

{
r1
r2
, n1

n2

})
. If σ2 is an endpoint of this interval,

logarithmic factors appear. The convergence rate is substantially smaller outside

the interval.

Remark 5.2. (i) For the left limit λ = 0 it holds σ =
√
n1/n2 and we have n1/σ = n2σ =

√
n1n2. Thus, the sparse tensor product space V̂ σ

J contains O(2J
√
n1n2J) degrees of freedom due to

Theorem 4.1. Hence, the logarithmic term (logN)min{ r1
n1

,
r2
n2

} has to be inserted as multiplicative

factor into (5.14).

(ii) For the right limit λ = 1 we have σ =
√
r1/r2 and thus r1/σ = r2σ =

√
r1r2. Then, with

Theorem 4.3, we achieve only an accuracy of order O(2−J
√
r1r2

√
J) in the sparse tensor product

space V̂ σ
J . Thus, the logarithmic term

√
log(N) has to be inserted as multiplicative factor into

(5.14).

(iii) If r1
n1

= r2
n2

, we have n1/σ = n2σ and r1/σ = r2σ for all λ = [0, 1]. Therefore, both types

of logarithmic terms have to be inserted as multiplicative factors into the cost complexity estimate

(5.14) in this situation.

One readily verifies that σ = σ(λ) from (5.13) satisfies the inequality

(5.15) min

{
r1
r2
,
n1

n2

}
≤ σ2 ≤ max

{
r1
r2
,
n1

n2

}
for all λ ∈ [0, 1].

In particular, since the function σ = σ(λ) is continuous in λ, each value between the upper and

lower bound is admitted. Via Lemma 5.1 and Remark 5.2 we covered all such choices of σ.

In the following lemma we consider the remaining choices of σ, i.e., the case that the parameter

σ lies outside of the interval given by (5.15). We will prove that the convergence rate is then

substantially smaller than that in (5.14). This result shows that all interesting parameters σ are

of the form (5.13). We therefore can restrict ourselves to such choices of σ (cf. Figure 5.2). Note

finally that the interval in (5.15) degenerates to the single point σ2 = n1

n2
in the case r1

n1
= r2

n2
.

Lemma 5.3. Let σ be such that

σ2 < min

{
r1
r2
,
n1

n2

}
or max

{
r1
r2
,
n1

n2

}
< σ2.

Then, the convergence rate is substantially smaller than that in (5.14).

Proof. Under the assumption σ2 < min
{

r1
r2
, n1

n2

}
it follows that

min

{
r1
r2
, σ2

}
= σ2 and max

{
n1

n2
, σ2

}
=
n1

n2
.

Consequently, according to Corollary 4.5, the cost complexity is essentially, i.e., up to logN -terms,

O
(
N

− min{
r1
σ

,r2σ}

max{
n1
σ

,n2σ}

)
= O

(
N

−
r2
σ

min{
r1
r2

,σ2}

n2
σ

max{
n1
n2

,σ2}

)
= O

(
N− r2σ2

n1

)
.

We therefore have to show that
r2σ

2

n1
< min

{
r1
n1
,
r2
n2

}
.
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But this inequality follows immediately from

r2σ
2

n1
<
r1
n1

⇔ σ2 <
r1
r2

and
r2σ

2

n1
<
r2
n2

⇔ σ2 <
n1

n2
.

In complete analogy the assertion is shown for the case max
{

r1
r2
, n1

n2

}
< σ2 where the cost

complexity is essentially O
(
N−r1/(n2σ

2)
)
. �

5.2. Approximation of functions with anisotropic mixed Sobolev smoothness. If we

consider the approximation of a function f ∈ Hs1,s2
mix (Ω1 × Ω2) with arbitrary 0 < s1 ≤ r1 and

0 < s2 ≤ r2, then we get results which are completely analogous to the last subsection. The only

difference is that r1 has to be replaced by s1 and r2 has to be replaced by s2. This means, for all

σ which are contained in the interval

(5.16) min

{
s1
s2
,
n1

n2

}
≤ σ2 ≤ max

{
s1
s2
,
n1

n2

}
,

the error ‖f − f̂J‖L2(Ω1×Ω2) behaves essentially like

O
(
N

−min
{

s1
n1

,
s2
n2

})
.

For all σ which are outside the above interval, the convergence rate is substantially smaller.

Obviously, equilibrating the number of unknowns is now the best choice since σ =
√
n1/n2 is the

only point which is always contained in the optimality interval given by (5.16).

5.3. Approximation of functions with isotropic Sobolev smoothness. In the following

discussion, we consider the approximation of an isotropic function f ∈ Hp(Ω1×Ω2). If p ≥ r1+ r2

we fall into the maximal regularity case, discussed in Subsection 5.1, since Hr1,r2
mix (Ω1 × Ω2) ⊂

Hr1+r2(Ω1 × Ω2).

We therefore may assume that p < r1 + r2. The highest rate of convergence is then achieved

if the minimum of s1/σ and s2σ constrained to s1 + s2 = p is maximal. Since the maximum is

attained if s1/σ = s2σ, we arrive at the choice

(5.17) s1 := min

{
pσ2

σ2 + 1
, r1

}
, s2 := min

{
p

σ2 + 1
, r2

}
.

We then have the following rates which depend on σ:

Theorem 5.4. Let f ∈ Hp(Ω1×Ω2) be a given function and let σ be a fixed, given number which

satisfies (5.13). Then, as long as

(5.18)
pσ

σ2 + 1
≥ min

{
r1
σ
, r2σ

}
,

the function f can be approximated in V̂ σ
J with the maximal convergence rate as specified in Lemma

5.1 and Remark 5.2. Otherwise, we get essentially, i.e., up to logN -terms, the reduced cost com-

plexity O(N−β) with

β =
p

n1

(1− λ)n1 + λr1
(1− λ)(n1 + n2) + λ(r1 + r2)

if
r1
n1

≤ r2
n2

and

β =
p

n2

(1− λ)n2 + λr2
(1− λ)(n1 + n2) + λ(r1 + r2)

if
r1
n1

>
r2
n2
.
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Proof. Choose s1, s2 as in (5.17). Then, we have

min

{
s1
σ
, s2σ

}
= min

{
pσ

σ2 + 1
,
r1
σ
, r2σ

}
.

Thus, if (5.18) holds, the assertion is obvious due to

min

{
s1
σ
, s2σ

}
= min

{
r1
σ
, r2σ

}

and Corollary 4.5. We therefore may assume that

pσ

σ2 + 1
< min

{
r1
σ
, r2σ

}

which implies

min

{
s1
σ
, s2σ

}
=

pσ

σ2 + 1
.

In case of r1
n1

≤ r2
n2

it follows from (5.13) that max{n1/σ, n2σ} = n1/σ and thus the cost complexity

is essentially

(5.19) O
(
N

−
pσ

1+σ2

max{
n1
σ

,n2σ}

)
= O

(
N

− p
n1

(1−λ)n1+λr1
(1−λ)(n1+n2)+λ(r1+r2)

)
.

Vice versa, if r1
n1
> r2

n2
, it holds that max{n1/σ, n2σ} = n2σ and consequently the cost complexity

is essentially

(5.20) O
(
N

−
pσ

1+σ2

max{
n1
σ

,n2σ}

)
= O

(
N

− p
n2

(1−λ)n2+λr2
(1−λ)(n1+n2)+λ(r1+r2)

)
.

This completes the proof. �

Remark 5.5. For σ =
√
r1/r2, that is λ = 1, the choice of s1, s2 from (5.17) leads to s1 =

r1 min
{

p
r1+r2

, 1
}

= r1
p

r1+r2
and s2 = r2 min

{
p

r1+r2
, 1
}

= r2
p

r1+r2
provided that p < r1 + r2.

Therefore, (5.18) is never satisfied if p < r1 + r2 and we get always the reduced cost complexity

O(N−γ) with

γ =

√
r1r2

p
r1+r2

max
{
n1

σ , n2σ
} = − p

r1 + r2
min

{
r1
n1
,
r2
n2

}

which is equivalent to (5.19) and (5.20), respectively.

The following result shows that, as long as the convergence rate is not maximal, the best setting

to approximate an isotropic function is provided by the choice σ =
√
n1/n2.

Proposition 5.6. Let f ∈ Hp(Ω1 × Ω2) be a given function with arbitrary 0 < p < r1 + r2 and

σ as in (5.13). Then, the approximation power of V̂ σ
J is the better the smaller the parameter λ is.

The highest convergence rate results therefore for the choice λ = 0, i.e., σ =
√
n1/n2, while the

lowest convergence rate results from the choice λ = 1, i.e., σ =
√
r1/r2.

Proof. To prove the assertion it suffices to show that, for fixed p < r1 + r2, the convergence rates

(5.19) and (5.20) decrease as the parameter λ increases.

Assume first that r1
n1
< r2

n2
. Then, the function

g(λ) :=
(1 − λ)n1 + λr1

(1 − λ)(n1 + n2) + λ(r1 + r2)

is monotonically decreasing due to

g(λ)′ =
r1n2 − n1r2

((1 − λ)(n1 + n2) + λ(r1 + r2))2
< 0.
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Hence, for λ < µ, we have

p

n1

(1− λ)n1 + λr1
(1− λ)(n1 + n2) + λ(r1 + r2)

≥ p

n1

(1− µ)n1 + µr1
(1− µ)(n1 + n2) + µ(r1 + r2)

which, in view of (5.19), is the first part of the assertion.

Likewise, it holds that

h(λ) :=
(1− λ)n2 + λr2

(1− λ)(n1 + n2) + λ(r1 + r2)

is monotonically decreasing provided that r1
n1
> r2

n2
. This gives

p

n2

(1− λ)n2 + λr2
(1− λ)(n1 + n2) + λ(r1 + r2)

≥ p

n2

(1− µ)n2 + µr2
(1− µ)(n1 + n2) + µ(r1 + r2)

for λ < µ. We then obtain the second part of the assertion with (5.19) and (5.20). �

Remark 5.7. It is well known that the highest rate, which is achieved by full tensor product spaces,

is given by Kolmogorov’s n-width, see [15]. If r1 = r2, it is N
−p/(n1+n2), i.e., N . ε−(n1+n2)/p, for

Sobolev balls in Hp provided that p ≤ r1. From Theorem 5.4 it follows that the sparse grid space

V̂ σ
J with σ =

√
n1/n2 also achieves this rate up to logarithmic terms. Note finally that in the case

p > r1 our construction implicitly exploits the then appearing mixed regularity and thus obtains

better rates.

6. Numerical experiments

We now present the results of our numerical experiments. To this end, we consider smooth

and non-smooth model functions. The practically obtained rates are in good agreement with the

presented theory.

6.1. An alternative decomposition of the sparse grid space. First, we give a hint on an

alternative decomposition of V̂ σ
J , which allows a simpler implementation in our case of two-fold

tensor-product domains. On Ω1 we use wavelets for the discretization which gives rise to a decom-

position

(6.21) V
(1)
J/σ =

J/σ⊕

j=0

W
(1)
j ⊂ L2

(
(0, 1)

)
,

i.e., we have the sequence

W
(1)
0 , W

(1)
1 , · · · W

(1)
J/σ.

On Ω2 we apply finite elements with sufficient polynomial exactness on a series of hierarchical

triangular meshes which stem from uniform refinement. They generate a family of nested single-

scale spaces

(6.22) V
(2)
0 ⊂ V

(2)
1 ⊂ · · · ⊂ V

(2)
Jσ ⊂ L2

(
(0, 1)2

)
.

We define the sparse grid space V̂ σ
J by

(6.23) V̂ σ
J :=

⊕

j1σ+j2/σ=J

W
(1)
j1

⊗ V
(2)
j2
.
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Figure 6.3. Cost complexities for approximating a smooth function in case of

n1 = 1, n2 = 2 and r1 = r2 = 1 (left) or r1 = 2, r2 = 1 (right).

This definition looks different from that in (3.6). But it is indeed equivalent since

V̂ σ
J =

⊕

j1σ+j2/σ≤J

W
(1)
j1

⊗W
(2)
j2

=

J/σ⊕

j1=0

W
(1)
j1

⊗
( Jσ−j1σ

2⊕

j2=0

W
(2)
j2

︸ ︷︷ ︸
=V

(2)

Jσ−j1σ2

)
=

⊕

j1σ+j2/σ=J

W
(1)
j1

⊗ V
(2)
j2
.

This way, standard finite element discretizations for the sequence (6.22) can directly be employed

and the need of a wavelet construction on Ω2 is avoided. This significantly simplifies programming

since it allows, at least for problems involving product operators, the reuse of existing FEM-code

on Ω2, makes the use of standard multilevel solvers directly possible and helps to circumvent the

difficulties a direct wavelet discretization may pose for e.g. the treatment of boundary conditions

there.

6.2. Smooth functions. We consider the situation of Ω1 = (0, 1) and Ω2 = (0, 1)2, that is n1 = 1

and n2 = 2. On Ω1 we use piecewise constant (i.e. r1 = 1) or linear (i.e. r1 = 2) wavelets for the

discretization which gives rise to a decomposition (6.21). On Ω2 we apply either piecewise constant

(i.e., r2 = 1) or globally continuous, piecewise linear (i.e., r2 = 2) finite elements on a series of

hierarchical triangular meshes which stem from uniform refinement. They generate the family of

nested single-scale spaces {V (2)
j }. We then employ the decomposition (6.23) for the approximation

in L2(Ω1 × Ω2).

For different choices of r1, r2, and σ, we compute the approximation error of the sparse grid

interpolant of the C∞-function

f(x,y) = sin(y1) + sin2(2πx)(y1 + y2)y2.

We first apply piecewise constant finite elements for the sequence {V (2)
j } on Ω2 in V̂ σ

J . In Figure

6.3, we plot the measured approximation error versus the number of degrees of freedom for the

three values σ =
√
r1/r2, σ =

√
n1/n2, and σ =

√
(r1 + n1)/(r2 + n2). On the interval Ω1 we

employ piecewise constant (left plot) and piecewise linear (right plot) wavelets. All the curves are

quite similar and behave essentially like N−1/2 (indicated by the dashed line) as predicted by

Lemma 5.1.
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Figure 6.4. Cost complexities for approximating a smooth function in case of

n1 = 1, n2 = 2 and r1 = 1, r2 = 2 (left) or r1 = r2 = 2 (right).

ansatz functions σ =
√

n1

n2
σ =

√
r1+n1

r2+n2
σ =

√
r1
r2

r1 = r2 = 1 N−1/2 N−9/20 N−1/4

r1 = 1, r2 = 2 N−1/2 N−1/2 N−1/2

r1 = 2, r2 = 1 N−1/2 N−3/8 N−1/4

r1 = r2 = 2 N−1/2 N−3/7 N−3/8

Table 6.1. The predicted rates of convergence.

The best cost complexity rate is observed for the cost-benefit equilibrated sparse grid space,

i.e., for σ =
√
(r1 + n1)/(r2 + n2), which is in accordance with Remark 5.2. It indeed seems to be

linear with N−1/2 asymptotics whereas the cost complexity rates for σ =
√
r1/r2 and σ =

√
n1/n2

exhibit additional logarithmic factors as stated in Remark 5.2 (ii) and (iii). This holds for both

cases, i.e., r1 = r2 = 1 and r1 = 2, r2 = 1.

Analogous observations are made if we employ piecewise linear wavelets on Ω1 and globally

continuous, piecewise linear finite elements on Ω2. The results are given in the right plot of Figure

6.4. Here, the predicted asymptotics is N−1, indicated by the dashed line.

If we combine globally continuous, piecewise linear finite elements {V (2)
j } on Ω2 with piecewise

constant wavelets on Ω1, we are in the situation that
√
n1/n2 =

√
r1/r2 =

√
(n1 + r1)/(n2 + r2).

Thus, the choice σ =
√
n1/n2 will lead to the best complexity, i.e., an essential convergence

rate of N−1. This is also seen from the left plot of Figure 6.4 where the approximation error is

plotted versus the number of degrees of freedom in case of σ =
√
n1/(n2 − 1), σ =

√
n1/n2, and

σ =
√
n1/(n2 + 1). Indeed, for σ 6=

√
n1/n2 a substantially smaller convergence rate is observed.

6.3. Non-smooth functions. We now investigate the approximation rates for the function

f(x,y) = | sin(πx) − y1|.

One readily verifies that f is in Hs(Ω1 ×Ω2) for all s < 3/2. We apply the same ansatz functions

on Ω1 and Ω2 as in the previous subsection and measure the approximation error of the sparse

grid interpolant for the three values σ =
√
r1/r2, σ =

√
n1/n2, and σ =

√
(r1 + n1)/(r2 + n2). If

we insert the limit case p := 3/2, Theorem 5.4 predicts the convergence rates given in Table 6.1.
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Figure 6.5. Cost complexities for approximating a non-smooth function in case

of n1 = 1, n2 = 2 and r1 = r2 = 1 (left) or r1 = 2, r2 = 1 (right). The three

asymptotic approximation rates are found in Table 6.1, respectively.
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Figure 6.6. Cost complexities for approximating a non-smooth function in case

of n1 = 1, n2 = 2 and r1 = 1, r2 = 2 (left) or r1 = r2 = 2 (right).

The errors which were measured in our numerical calculations are plotted in Figures 6.5 and

6.6. The predicted convergence rates from Table 6.1 are visualized there as dashed lines. Figure

6.5 shows the case r1 = r2 = 1 (left plot) and r1 = 2, r2 = 1 (right plot), Figure 6.6 shows the

case r1 = 1, r2 = 2 (left plot) and r1 = r2 = 2 (right plot). Equilibrating the number of degrees of

freedom (that is, the choice σ :=
√
n1/n2) gives in any case the best rate N−1/2. Note that this is

even the same rate as for smooth functions if we would there apply piecewise constant functions

on Ω1 and Ω2. As it can be seen in Figures 6.5 and 6.6 this rate is essentially achieved. It is

also seen that the choice σ :=
√
r1/r2 gives always a substantially smaller convergence rate. For

σ :=
√
(r1 + n1)/(r2 + n2) the rate is somewhere in between. However, its slope cannot be clearly

seen from the plots except in the case r1 = 2 and r2 = 1. There, also the related asymptotics

N−3/8 is substantially different from N−1/2.
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7. Approximation in arbitrary norms

So far, we only considered the case of the approximation error measured in the L2(Ω1 × Ω2)-

norm, i.e., the Hq1,q2
mix (Ω1 × Ω2)-norm with q1 = q2 = 0. However, certain applications involve

other error norms which are of mixed type with more general q1, q2. For example, the two-point

correlation of solutions to elliptic partial differential equations of second order with stochastic right

hand side are inH1,1
mix(Ω1×Ω2) (cf. [20]). Moreover, radiative transfer (cf. [23]) and homogenization

problems (cf. [14]) lead naturally to the H1,0
mix(Ω1 × Ω2)-norm. Therefore, we comment on the

situation where the error is considered in the Hq1,q2
mix (Ω1 × Ω2)-norm, with −γ̃1 < q1 < γ1, and

−γ̃2 < q2 < γ2. Here, γi and γ̃i denotes the regularity of the primal and dual wavelets, respectively.2

First, in analogy to (2.3), we assume the shifted approximation properties

inf
vj∈V

(i)
j

‖u− vj‖Hqi (Ωi) . 2−j(si−qi)‖u‖Hsi(Ωi), u ∈ Hsi(Ωi)

to hold for qi ≤ si ≤ ri uniformly in j. In particular, for any f ∈ Hsi(Ωi), this induces the shifted

estimate

(7.24) ‖Q(i)
j f‖Hqi (Ωi) . 2−j(si−qi)‖f‖Hsi (Ωi), qi ≤ si ≤ ri.

This gives us straightforwardly the following generalization of Theorem 4.3:

Theorem 7.1. Let q1 < s1 ≤ r1, q2 < s2 ≤ r2 and f ∈ Hs1,s2
mix (Ω1×Ω2). Then, the approximation

f̂J =
∑

j1σ+
j2
σ ≤J

(
Q

(1)
j1

⊗Q
(2)
j2

)
f ∈ V̂ σ

J

satisfies

‖f−f̂J‖Hq1,q2
mix (Ω1×Ω2)

.




2−J min{(s1−q1)/σ,(s2−q2)σ}‖f‖Hs1,s2

mix (Ω1×Ω2)
, if (s1 − q1)/σ 6= (s2 − q2)σ,

2−J(s1−q1)/σ
√
J‖f‖Hs1,s2

mix (Ω1×Ω2), if (s1 − q1)/σ = (s2 − q2)σ.

Proof. It follows by standard product arguments from (7.24) that

‖f − f̂J‖2Hq1,q2
mix (Ω1×Ω2)

.
∑

j1σ+
j2
σ >J

∥∥(Q(1)
j1

⊗Q
(2)
j2

)
f
∥∥2
H

q1 ,q2
mix (Ω)

.
∑

j1σ+
j2
σ >J

2−2((s1−q1)j1+(s2−q2)j2)‖f‖2
H

s1,s2
mix (Ω1×Ω2)

.

The desired result follows from this in complete analogy to the lines of the proof of Theorem 4.3

with now just s1, s2 shifted to s1 − q1, s2 − q2 in the decay rates and clauses (but of course not

in the smoothness assumption ‖f‖Hs1,s2
mix (Ω1×Ω2)

). �

Also, Corollary 4.5 directly carries over. We obtain:

Corollary 7.2. Let q1 < s1 ≤ r1, q2 < s2 ≤ r2 and f ∈ Hs1,s2
mix (Ω1 ×Ω2). Furthermore, denote by

N := dim V̂ σ
J the number of degrees of freedom in the sparse tensor product space V̂ σ

J and set

α :=
min{(s1 − q1)/σ, (s2 − q2)σ}

max{n1/σ, n2σ}
.

2Here, we assume as usual that the polynomial exactness ri and r̃i of the primal and dual wavelets is

higher than their regularity γi and γ̃i. If this is not the case, then the lower and upper bounds of the qi

have to be correspondingly replaced by −r̃i and ri, compare also [5].
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If n1/σ 6= n2σ, then the approximation (4.11) in V̂ σ
J produces the following convergence rate in

terms of the degrees of freedom N :

‖f − f̂J‖Hq1,q2
mix (Ω1×Ω2) .




N−α‖f‖Hs1,s2

mix (Ω1×Ω2)
, if (s1 − q1)/σ 6= (s2 − q2)σ,

N−α
√
logN‖f‖Hs1,s2

mix (Ω1×Ω2)
, if (s1 − q1)/σ = (s2 − q2)σ.

If n1/σ = n2σ, we have

‖f − f̂J‖Hq1,q2
mix (Ω1×Ω2)

.




N−α(logN)α‖f‖Hs1,s2

mix (Ω1×Ω2)
, if (s1 − q1)/σ 6= (s2 − q2)σ,

N−α(logN)α+
1
2 ‖f‖Hs1,s2

mix (Ω1×Ω2), if (s1 − q1)/σ = (s2 − q2)σ.

Furthermore, the discussion of the results in Subsections 5.1 and 5.2 also carries directly over

with the obvious substitutions ‖f − f̂J‖Hq1,q2
mix (Ω1×Ω2) for ‖f − f̂J‖L2(Ω1×Ω2) and r1 − q1, r2 − q2 for

r1, r2 or s1− q1, s2− q2 for s1, s2 (in the rates and case clauses but of course not in the smoothness

prerequisites ‖f‖Hr1,r2
mix (Ω1×Ω2)

and ‖f‖Hs1,s2
mix (Ω1×Ω2)

, respectively).

8. Concluding remarks

In the present paper we restricted ourselves to the construction of sparse tensor product spaces

on two-fold tensor product domains. We now comment on the situation in case of m-fold tensor

product domains
⊗m

i=1 Ωi with Ωi ∈ R
ni , ni ∈ N, and associated multiscale hierarchies {V (i)

j } of

polynomial exactness ri.

It becomes clear from the theory presented in Section 4 that, when building the sparse tensor

product space V̂J which consists of all tensor productsW
(1)
j1

⊗· · ·⊗W (m)
jm

whose indices satisfy the

inequality
∑m

i=1 ji · αi ≤ J (αi > 0), the approximation power is essentially the minimum of the

approximation powers of the extremal univariate single-scale spaces V
(i)
J/αi

. Thus, the approxima-

tion power in V̂J is essentially of the order O(2−J mini∈{1,...,m}{ri/αi}) provided that the function

to be approximated is smooth enough. If only Hsi(Ωi)-smoothness with si ≤ ri is provided in the

i-th variable, the related rate has to be replaced by O(2−J mini∈{1,...,m}{si/αi}).

Furthermore, it is obvious that the number of unknowns in V̂J scales essentially like the

maximum of the unknowns of the extremal univariate single-scale spaces, i.e., V̂J has essen-

tially O(2J maxi∈{1,...,m}{ni/αi}) unknowns. However, the complete study of the logarithmic factors

(cf. Corollary 4.5) is not an easy task and is highly nontrivial and technical. Moreover, we need

to work more on how to transfer the discussion of Section 5 to the sparse m-fold tensor product

spaces.
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