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Abstract

We propose a new mathematical data analysis approach, which is based on the math-
ematical principle of symmetry, for the post-processing of bundles of finite element data
from computer-aided engineering. Since all those numerical simulation data stem from the
numerical solution of the same partial differential equation, there exists a set of transfor-
mations, albeit unknown, which map simulation to simulation. The transformations can be
obtained indirectly by constructing a transformation invariant positive definitive operator
valid for all simulations.

The eigenbasis of such an operator turns out to be a convenient basis for the handled
simulation set due to two reasons. First, the spectral coefficients decay very fast, depending
on the smoothness of the function being represented, and therefore a reduced multi-scale
representation of all simulations can be obtained, which depends on the employed opera-
tor. Second, at each level of the eigendecomposition the eigenvectors can be seen to recover
different independent variation modes like rotation, translation or local deformation. Fur-
thermore, this representation enables the definition of a new distance measure between
simulations using the spectral coefficients. From a theoretical point of view the space of
simulations modulo a transformation group can be expressed conveniently using the op-
erator eigenbasis as orbits in the quotient space with respect to a specific transformation
group.

Based on this mathematical framework we study several examples. We show that for
time dependent datasets from engineering simulations only a few spectral coefficients are
necessary to describe the data variability, while the coarse variations get separated from
the finer ones. Low dimensional structures are obtained in this way, which are able to
capture information about the underlying simulation space. An effective mechanism to deal
effectively with the analysis of many numerical simulations is obtained, due to the achieved
dimensionality reduction.

1 Introduction

Computer-aided engineering (CAE) simulations are numerical solutions of partial differential
equations (PDEs) which model the physical behavior of industrial products. Nowadays the art
of simulation in industry is highly developed, large high performance computer systems are used
to solve hundreds of finite element model variants. Engineers need to analyze and compare
several thousand simulations in the product development process, with the goal to get the best
product performance, while taking functional constraints, costs, or regulations into account.
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The detailed analysis process usually involves evaluation of time dependent 3D animations
of the product. Today in industry, a large amount of engineering know-how and time is invested
for the evaluation of model variants based on the detailed investigation of the full results, e.g.
in the form of movements or deformations, or the study of a few derived scalar quantities or
performance curves. Analyzing and trying to identify cause and effect in the data set of computer
simulations using the full finite element meshes in the range of millions of nodes is a challenging
open problem. In this work, we introduce a novel analysis approach which can efficiently compare
3D finite element mesh data and therefore overcome this challenge.

The motivation and idea for our method come from principles that are used for the analyt-
ical solution of differential equations based on the notion of symmetry. Cartan’s moving frame
method [Car83] has inspired many analytical solution methods for differential equations and we
also use its principles for our method. The proposed approach exploits a fundamental property
of simulations, namely that they are solutions of partial differential equations. Therefore, sim-
ulations can be treated as mathematical objects which are symmetrical in the sense that one
can apply a transformation to one, and that the new object after the transformation cannot
be distinguished from the original one in the underlying mathematical space; in other words,
it is invariant to the transformation. Finding such transformations can be very difficult and is
problem dependent. Nevertheless we observe that such transformations, if available, are actually
sending all simulations to an invariant space, so that instead of focusing on the transformation,
we could instead focus on such space directly and try to find ways to obtain a representation of
it. For certain practical situations this will be shown to be indeed possible.

As an example consider deformations of a car structure. In many practical cases, the changes
between different simulations, e.g. due to variations in the material parameters, are distance
preserving, that is after a deformation the distance between points in the structure are kept the
same. In mathematical terms the transformation is therefore an isometry. Instead of looking
for such a transformation directly, we here propose to look for some invariance property that
is valid for all isometric changes, such property can be found in a differential operator. For
this specific case, the Laplace-Beltrami operator, constructed using geodesic distances on the
mesh, is an operator invariant to isometric transformations. If we assume that all simulations
are obtained through such a transformation, the operator will be the same for all of them. Now,
since this operator is positive semidefinite a spectral orthogonal decomposition can be found and
an orthogonal basis of the invariant space can be constructed. In other words, an equivalent
representation of the space, invariant to isometric changes, can be obtained. We now can project
all simulations into this new basis in the form of their spectral coefficients and thereby obtain a
set of equivalent, but transformed simulations, represented in the basis of the invariant space.

The number of basis elements in the new representation can be very large, in the order of the
number of nodes in the discrete case. Nevertheless, we will see that under certain conditions,
these coefficients decay very fast so that only few of them are big and reflect the variability of
the simulations. This variability turns out to be captured in a multi-scale way, since the basis
of the operator can separate geometrical coarse components from the finer ones. In summary,
the original high dimensional simulations have been transformed into a compact multi-scale re-
presentation, enabling not only an efficient dimensionality reduction but also making further
analysis tasks easier. Of course one can not assume that all simulations can be obtained as
isometric transformations from a reference one and therefore we propose also a way, at least for
certain type of problems, to generalize this approach using other types of operators. In partic-
ular we investigate one invariant to a general nonlinear transformation, the so-called nonlinear
independent component analysis (NICA) operator.

We start with a summary of related research in section 2. The mathematical framework is
presented in section 3, in particular we consider two types of invariant operators, the Laplace-
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Beltrami operator and the so called NICA (Nonlinear Independent Component Analysis) opera-
tor, and show how a simulation bundle can be transformed into a new basis obtained from these
operators. We treat aspects of the spectral approximation properties in section 4. The data
analysis approach is given in section 5 and we apply the approach using the Laplace-Beltrami
operator to an industrial engineering application in section 6.

2 Related Work

There are several related research works for the analysis of data from engineering simulations. A
common approach for the evaluation of several simulations is the so-called sensitivity analysis.
In its simplest form, one input variable is varied at a time, scalar output quantities of interest are
evaluated for a few simulation results and sensitivity is measured by linear regression. Extensions
of the approach in several ways are available, in particular in the form of response surface
approaches [MMAC09], where the most relevant quantities of interest are trained, as fitted
functions of the input parameters, based on the results of a few numerical simulations. The
underlying assumption is that the information content of all simulations can be concentrated in
the scalar quantities of interest. This is also the major drawback of this approach, i.e. in case the
relation between input parameters and the overall behavior of the simulation cannot be reduced
to such scalar quantities or is not well understood, e.g. due to complicated non-linear behavior.

In contrast to sensitivity analysis we aim to look at the data in more detail and work with
the actual numerical simulation data, here only limited research did happen so far. One of the
first works analyzing engineering data from full numerical simulations was Ackermann et al.
[AGHH08], where the authors used principal component analysis (PCA) for detecting important
parameters from nonlinear finite element simulations. Car crash simulations where analyzed in
[MT08] using clustering with a local distance measure, regions of similar deformation behavior
where identified and evaluated with this approach. The PCA has also been used in [TNNC10]
for a group of simulations where some parameters have been changed, the approach uses the first
eigenvectors of the covariance matrix of all given simulations as deformation modes. Methods
based on the PCA are known to be efficient for many cases if the data variability is well reflected
by the available data. The eigenvector basis from the PCA reflects those changes in an optimal
way and is used to show individual deformation modes and those are even used for extrapolating
new virtual simulations to show trends without calculating new time consuming simulations.

While linear methods based on the singular value decomposition (SVD), like the PCA, have
proven to be successful for industrial applications, it is nevertheless known that if nonlinear cor-
relations are present in the data, the use of the PCA is not optimal, see e.g. [LV07]. In [BGIT+13]
several methods from machine learning have been used for the analysis of crash simulations. A
preprocessing using either k-means or spectral clustering reduced the original big sized problem
to several clusters, which can be analyzed separately using local linear approximation based on
tangent space estimation [ZQZ11], principal manifold learning with sparse grids [FG09], and dif-
fusion maps [CL06]. In that work, good reconstruction capabilities using the nonlinear principal
manifold approach was shown as well as the detection of principal effects and the ability to detect
their dependencies on certain input variables by diffusion maps. Additionally, [Iza14] shows the
application of diffusion maps to the analysis of engineering data in crash simulation, vibration
analysis and metal forming. The approach was able to cluster deformation data and vibration
curves from simulation bundles. Furthermore, it was also shown that the most important input
variable changes can be expressed using clusters in low dimensional embeddings.

Taking these research works into account, one can observe that even if good progress has been
achieved, there is still need to develop methods that improve the analysis capabilities especially
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in the presence of nonlinear relationships in the simulation data.
Additionally, we mention the related areas of statistical shape analysis and 3D geometry

analysis. From the theoretical point, work has been done in the area of statistical shape analysis,
where statistics on shape manifolds, e.g. intrinsic and extrinsic means, are studied. Started by
the work of Kendall [KBCL99], this is a very active research area, recent work can be found in
[SJML05, FJ07, HHM10] and references therein. A fundamental difference to methods applied in
manifold learning is that in shape analysis a manifold structure of the shape space is supposed to
be known and is kept fixed. Additionally, we would like to mention the mathematical work in the
area of Riemannian geometries for plane curves and surfaces [MM06, BHM11], those papers, and
several others referenced therein, highlight the way to the definition of an abstract mathematical
setting for those spaces that can be extended to the analysis of the space of simulations.

Finally another related field is 3D geometry analysis, where the study object is a surface
mesh embedded in R3. A number of methods have been developed for pose independent shape
classification [LSS+10], other applications include shape retrieval [RWP06], shape segmentation
[RBG+09], invariant mesh representation [LSLCO05], and compression [BCG05], to name a
few. Many of these applications make use of the Laplace-Beltrami operator specially for pose
independent processing, that is, if two shapes are isometric, i.e. geodesic distances are preserved,
then ideally a method will not distinguish between them. Actually this is exactly the opposite of
what we want, since when we think about a deformed shape as a 3D geometry, we would like to
distinguish between two isometric shapes since they are the result of a simulation with different
input parameters. We also mention [OBCS+12], where 3D shapes are compared based on the
assumption of existence of an a-priori known transformation bringing one shape into another.
While this last approach has a connection to our approach, it is substantially different since
it describes a shape using features which are then used for classification or pose independent
shape matching. As will be seen, our approach can be interpreted expressing the same shape in
another coordinate system. The intention of our approach is not to improve 3D shape analysis
methods, but to be able to classify, reconstruct, estimate parameter input dependence and explore
simulation data with the final objective of improving engineers productivity during the design
of new products.

3 Mathematical Setting

First, we give in this section a review of the mathematical setting, in particular Riemannian
manifolds, which in our case reduces to being quotient spaces of manifolds by isometric group
actions. Then we consider an important component of our approach, the use of so called inva-
riant differential operators, which have a special behavior under isometric transformations, and
discrete approximations of such operators.

3.1 Preliminary Definitions

Let us start with some definitions from differential geometry, for details refer to, e.g., [Mic08].
Let ϕ be a distance preserving diffeomorphism ϕ :M→M′ between two Riemannian manifolds
(M, g) and (M′, g′) with g = ϕ∗g′, where the pullback of g′ by ϕ is defined by ϕ∗g′ = g′ ◦ ϕ. If
ϕ is geodesic distance preserving, it follows that dg′(ϕ(p), ϕ(q)) = dg(p, q), where dg is induced
by the metric tensor g. A global isometry is a map fromM to itself which preserves the distance
function dg.

Given a Riemannian manifold (M, g) and a function f ∈ C∞(M), f :M→ R, the differential
map dpf : TpM→ R is linear for all p ∈M. There exists a vector field in the tangential bundle
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TM called the gradient of f , ∇gf such that,

〈∇gf(p), Xp〉g(p) = dpf(Xp) ∀Xp ∈ TpM.

Consider now the space X (M) of vector fields over M, i.e. X ∈ X (M), X : M → TM.
Furthermore, a differential form w of grad k on M is an alternating k-linear mapping w :
(X (M))k → C∞, and let Ωk(M) be the set of all differential k-forms on the manifold M.

The interior product is the contraction of a differential form with a vector field, i.e. the map
iX is defined for X ∈ X (M) as (iXw)(X1, · · · , Xk−1) := w(X,X1, · · · , Xk−1). Given a k-form
w ∈ Ωk(M), where now k = dim(M), and a vector field X onM, the divergence divwX is defined
implicitely by d(iXw) = divwX ·w, where d(iXw) is the exterior derivative of iXw. Furthermore,
the Laplace-Beltrami operator ∆g : C∞ → C∞ on a manifold is defined as ∆g = −divg · ∇g.

Finally, let Λ be a group of isometries of a metric space M , then Λ defines a natural group
action

Θ : Λ×M →M, (ϕ, p) 7→ ϕ(p).

The flexibility of constructing topological spaces can be enhanced through the use of equiv-
alence relations, i.e a relation on M ×M that satisfies transitivity, reflexivity and symmetry
properties. Elements of M that satisfy an equivalence relation form a quotient space.

For our purposes we consider special type of quotient spaces, namely those constructed using
a group Λ acting on M . If a group Λ acts on a space M by homeomorphism, then we have the
orbit equivalence relation: p ∼ q if and only if p = ϕ · q for some ϕ ∈ Λ. Formally

Definition 3.1. Given a group Λ acting on M , an orbit of a point p in M is the set of elements
of M to which p can be moved by the elements of Λ. The set of all orbits is called orbit space
and is written as M/Λ.

3.1.1 Solution Space of Simulations

Let us now consider our abstract setting. We want to analyze the space of time dependent
solutions of a partial differential equation on a given fixed domain Ω, where the variations are
obtained by changing boundary and/or initial conditions. We make the following two assump-
tions:

• each solution at a given time is a (Riemannian) 2-manifold Mi embedded, in R3.

• solution operators are considered to be group transformations, that are assumed to be
isometries, i.e. at each time step a solution Mi is isometric to an initial, or reference,
manifold Mr.

Simulations are numerical solutions of partial differential equations and in this work we
assume they are surfaces or surface functions embedded in R3. We propose to treat them
as shapes and use the Riemannian framework that has been developed for shape spaces, see
[MM06, BHM11, BBM14]. According to this framework, shape space is a quotient space of
a manifold modulo a group action Λ over it. For simulations we would then use, under the
assumptions above, the space of orbits

Emb(M,R3)/G(M).

G is the group of transformations that leave a surface invariant with respect to distances as
measured in the reference surface Mr. Which particular structure the simulation space has will
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depend on the type of group action G, e.g. one could consider rotations, translations, or defor-
mations. A particular case, the space Emb(M,R3)/Diff(M) has been studied intensively in
the more general context of embeddings in Rn modulo the action of the group of diffeomorphism
Diff(M), they are are shown to be special manifolds [MM06, BHM11, BBM14]. In these refer-
ences also the more general case of immersions in Rn is treated, those spaces are then of orbifold
type due to the presence of singularities. For more details about the setting for simulations see
[Ter16].

3.1.2 Discrete Setting

We view the discretization of a solution of a PDE now as a mesh approximation K of a 2-manifold
M, which is isometrically embedded in R3. The following definition is one way to quantify how
well a mesh K approximates a manifold M, see [BSW08] for details.

Definition 3.2. Let K be a meshed surface approximating M, where the vertices of K are on
M. We say that K is an (ε, η)-approximation of M if the following two conditions are fulfilled:

• For a face t in K, the maximum distance between any two points on t is at most ερ, where
ρ is the reach, defined as the infimum of the local distance between any point w in M and
the medial axis of the surface M.

• For a face t in K and a vertex p ∈ t, the angle between nt, the unit outward normal of the
plane passing through t, and np, the unit outward normal of M at p, is at most η.

Furthermore, we have restrictions of continuous functions on M to the mesh K:

Definition 3.3. Let f :M→ R be a continuous function on M. The function f evaluated at
the nodes of a mesh K is called a mesh function f : K → R.

3.2 Laplace-Beltrami Operator

For the Laplace-Beltrami operator ∆M := ∆g|M we consider the eigenvalue problem ∆Mψ =
−λψ, restricted to the manifold (M, g), where λ is an eigenvalue of ∆M and ψ is the correspond-
ing eigenfunction. We consider positive semidefinite operators, therefore all eigenvalues λj , j ≥ 0
are real, positive, and isolated with finite multiplicity. The set of eigenfunctions {ψj}∞j=1 of the
operator forms an orthogonal basis for functions on M, therefore the following decomposition
can be written for f ∈ C∞(M):

f =
∞∑

j=0

αjψj , αj = 〈f, ψj〉g. (1)

For any function f as defined in (1) one can, instead of considering the function itself, equivalently
consider its vector of spectral coefficients α = [α1, α2, ...], obtained by projecting the function
along the infinite dimensional eigenspace spanned by the eigenfunctions. Those coefficients can
be used to compute the distance of functions due to the Parseval identity as follows:

Proposition 3.1. The difference between two functions f1 =
∑∞
j=0 α

1
jψj, α

1
j = 〈f1, ψj〉 and

f2 =
∑∞
j=0 α

2
jψj, α

2
j = 〈f2, ψj〉 using a decomposition with the corresponding eigenfunctions for

an operator ∆g(M), is given by

‖f1 − f2‖2 =
∞∑

j=0

〈α1
j − α2

j , ψj〉2 = ‖α1 − α2‖2
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where α1 and α2 are the spectral coefficients of the orthogonal decomposition for f1 and f2,
respectively.

3.2.1 The Laplace-Beltrami Operator on a Mesh

Let M be as before a 2-manifold M isometrically embedded in R3. Let K be an (ε, η)-
approximation of M. Further, let t be a face in K, let #t denote the number of vertices on
t, and let V (t) be the set of vertices of t. Then, for any vertex w ∈ V (t) of any face t ∈ K, the
mesh Laplace operator is defined as

LhKf(w) =
1

4πh2

∑

t∈K

Area(t)

#t

∑

p∈V (t)

e−
d(p,w)2

4h (f(p)− f(w)), (2)

where d(p, w) denotes the graph distance and h is a parameter which corresponds to the size of
the local neighborhood at a point.

In the following theorem from [BSW08] one exploits that locally the Euclidean distance is a
good approximation of the geodesic distance to give approximation properties for the Laplace-
Beltrami operator on a surface meshK by the mesh Laplace operator LhK . Notice that in [BSW08]
the Euclidean distance ‖p−w‖ is used in the definition of LhK instead of d(p, w). Since the graph
distance is a better approximation of the geodesic distance it naturally holds for definition (2)
as well.

Theorem 3.2. (Laplace-Beltrami Approximation Theorem [BSW08]) Let Kε,η be a an (ε, η)-

approximation of M. Put h(ε, η) = ε
1

2.5+α + η
1

1+α for an arbitrary positive number α > 0. Then
for any function f ∈ C3(M) it holds

lim
ε,η→0

sup
Kε,η

∣∣∣
∣∣∣Lh(ε,η)Kε,η

f −∆Mf |Kε,η
∣∣∣
∣∣∣
∞

= 0,

where the supremum is taken over all (ε, η)-approximations of M.

According to this result, for a mesh fine enough which also approximates the curvature of
M well, we expect to get an approximation of the corresponding continuous Laplace-Beltrami
operator on this surface.

3.2.2 The Laplace-Beltrami Operator under Isometric Transformations

We now assume that simulations are mesh functions defined on a surface mesh and that in the
continuous limit a Riemannian manifold Mr can be defined. Further let ϕi be a distance pre-
serving diffeomorphism ϕi :Mr →Mi between two Riemannian manifolds (Mr, g) and (Mi, gi)
and let K̄ =

{
Ki
}m
i=1

be a set of meshes which are assumed to have the same connectivity. It

is also assumed that a mesh function corresponding to f i : Mi → R is evaluated at the nodes
of the mesh Ki. Furthermore, each f i has been obtained through the transformation ϕi of one
mesh function f : Mr → R, where Mr is approximated by the mesh Kr, i.e. f i = f · (ϕi)−1.
The transformation is such that geodesic distances are kept the same, therefore the following
diagram commutes:

Mr Mi

Kr Ki

ϕi

ϕi|K

7



Here ϕi|K is a discrete version of ϕi. Under the above assumptions we can assert the following:

Proposition 3.3. The approximation of the Laplace-Beltrami operator LhK given in (2), con-
structed using graph distances for one mesh Ki=r, is (approximately) the same for all meshes
i = 1, . . . ,m in the set K̄.

Proof. Let ϕi be a diffeomorphism ϕi :Mr →Mi between two Riemannian manifolds (Mr, g)
and (Mi, gi), where g = ϕi∗gi. Further, let ϕi be geodesic distance preserving, i.e. dgi(ϕ

i(p),
ϕi(q)) = dg(p, q). Notice that the Laplace-Beltrami operator is invariant to geodesic preserving
transformations. For any Mi that is a deformed surface which is obtained from Mr using
a geodesic distance preserving mapping ϕi, we can therefore follow that the operator cannot
distinguish Mr and Mi as different manifolds; we just have different charts. As a consequence,
the Laplace-Beltrami operator will be the same for all Mi.

Now consider a set of meshes K̄ =
{
Ki
}m
i=1

, each Ki approximating a manifold Mi, and

corresponding mesh functions f i evaluated on each Ki. We assume that through a specific
transformation f i = f · (ϕi|K)−1, i.e. graph distance preserving, all mesh functions f i on Ki can

be obtained. Further, Ki approximates a manifold surface Mi and we assume that the graph
distances in Ki approximate the geodesic distances in Mi. It follows that the operator (2) is
approximately the same for all meshes.

Based on the above results, the operator can be evaluated numerically, the eigenvectors can be
computed and the simulation bundle can be projected into this new eigenbasis. We make use of
the expression (2), evaluated on a reference mesh. The graph distance, as an approximation of the
geodesic distance, is calculated using the algorithm described in [MMP87]. To approximate the
Laplace-Beltrami operator (2) we use a slightly modified version of the software1 used in [BSW08].
That algorithm requires a parameter ρ ·

√
h which controls the maximum geodesic distance of

nodes which are employed in the calculation of a matrix entry. The overall approximation
procedure is described in algorithm 1.

3.3 The NICA Operator on a Mesh Cloud

The use of the Laplace-Beltrami operator is already very useful for applications, nevertheless one
can certainly think about other types of invariant operators. We introduce in this section the
so-called Nonlinear Independent Component Analysis (NICA) operator [SC08], which is valid
in a stochastic setting, i.e. where simulation datasets are assumed to have been obtained by
sampling from an unknown probability distribution concentrated along a manifold.

Abstractly, given N points p(1), · · · , p(N) ∈ Rd in the unobservable manifold Mp, they are
mapped to the points η(1), · · · , η(N) ∈ RM in another manifoldMη by a nonlinear transformation
ϕ. This mapping and its inverse can be linearly approximated on a ball Bδ(p

(k)) around any
given point p(k) by its differential. The first order Taylor expansion is then

η = ϕ(p) = η(k) + Jϕ(p(k))(p− p(k)) +O(‖p− p(k)‖2), for p ∈ Bδ(p(k)), (3)

where Jϕ(p(k)) is the Jacobian of ϕ evaluated at p(k) and also η(k) = ϕ(p(k)).
This expression allows a first order approximation of the distance

‖η − η(k)‖2 = ‖Jϕ(p(k))(p− p(k))‖2 +O(‖p− p(k)‖3),

while for the inverse map ϕ−1 one can write

‖p− p(k)‖2 = ‖Jϕ−1(η(k))(η − η(k))‖2 +O(‖p− p(k)‖3),

1J. Sun, MeshLP: Approximating Laplace-Beltrami Operator from Meshes, geomtop.org/software/meshlp
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Algorithm 1: Spectral decomposition of Laplace-Beltrami operator

Input: reference simulation xr: A surface embedded in R3, given as triangular mesh with
N points and Nf faces.

Parameter: ρ, h, p
Output: p first eigenvectors of the Laplace-Beltrami operator, invariant to distance

preserving transformations
1 foreach k̃ ∈ {1, . . . , Nf} do . estimate areas of each face

2 foreach i ∈ {1, 2, 3} do . 1/3 of area assigned to each vertex

3 area[k̃i] = (area of face k̃)/3 . face k̃ vertices indexed by k̃i

4 foreach k ∈ {1, . . . , N} do . weight matrix with graph distances

5 [ids, dists] = geoddist(k, xr, ρ ·
√
h) . distances on xr up to ρ ·

√
h

6 foreach l, d ∈ [ids, dists] do
7 W[k, l] = area[k] · area[l] · exp(−d2/(4h))/(4πh2)

8 foreach k ∈ {1, . . . , N} do

9 D[k, k] =
∑N
l=1 W[k, l]

10 L = W −D . compute graph Laplacian

11 decompose L by [U,S,V] = SVD(L) . non-trivial eigenvectors

12 return first p non-trivial eigenvectors U

see [SC08, KHC12] for details. In view of this approximation, a ball Bδ(p
(k)) inMp centered at

p(k) is therefore mapped to a small ellipsoid in Mη centered around η(k). This ellipsoid can be
identified with the covariance matrix Ck,δ of its inner points [SC08], i.e.

Ck,δ = E[(η − η(k))(η − η(k))T ], (4)

by making use of the linearity of the expectation and using the approximation (3). It has been
further proven in [SC08] that

Jϕ(p(k))JTϕ (p(k)) =
d+ 2

δ2
Ck,δ +O(δ),

whereMp ⊂ Rd, and that a second-order approximation of the local distance ‖p− p(k)‖2 can be
written using C+

k,δ, the pseudo-inverse of Ck,δ, as

‖p(l) − p(k)‖2 =
1

2

δ2

d+ 2
(η(l) − η(k))T

[
C+
k,δ + C+

l,δ

]
(η(l) − η(k)) +O(‖p(l) − p(k)‖4)

Using this expression, the distance can be approximated according to the following proposition,
see [SC08, KHC12] for details.

Proposition 3.4. Let p, w ∈ Mp, and let η, β be their respective mappings to the observable
space Mη. Then the distance in Mp (using local coordinates) can be written as:

‖p− w‖2Rd =
1

2
(η − β)T

[
(JϕJ

T
ϕ )−1(η) + (JϕJ

T
ϕ )−1(β)

]
(η − β) +O(‖η − β‖4RM ), (5)

where d ≤M , and Jϕ is the Jacobian of the transformation.
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Using the distance in (5), the matrix operator of size N × N can be constructed using the
weights Wp,w = exp(−‖p − w‖2/ε) and with it one can build the corresponding (negatively
defined) graph Laplacian, for which we keep the same sign as given in [SC08],

L = D−1W − I, Dkk =

N∑

l=1

Wkl. (6)

The NICA operator is now defined as L.
It has been demonstrated in [CL06] that the discrete operator L converges to a Fokker-Planck

operator in the non-observable space Mp, the eigenvectors of the graph Laplacian approximate
also the eigenfunctions in the non-observable space in the limit N →∞, ε→ 0

LMf = ∆f −∇U · ∇f, U = −2 logµ, (7)

where µ is the density function inMp. As can be seen from this result, through this construction
we are actually recovering an operator in Mp. Additionally, it has been demonstrated that,
under some conditions, the top eigenvector corresponding to the top nontrivial eigenvalue of the
operator D−1W is actually a function of only the first non-observable variable, the second of the
second one and so on, see [Sin06] for details.

We make the observation that this construction not only allows us to obtain the non-
observable variables, but it delivers also an operator which is invariant to a nonlinear trans-
formation. This constitutes a very important and interesting result for our invariant operator
approach.

We propose to use this stochastic setting for the case of simulations as solutions of a PDE
model subject to small parameter changes. Given m simulations, they can be assumed to be
obtained as an stochastic simulation undergoing a nonlinear transformation from a reference
simulation. The transformation is unknown but the realizations for different parameter combi-
nations are known. The data points p(k) are assumed to have been obtained by sampling from
an unknown nonuniform probability distribution µ on the manifoldMp. To construct the NICA
operator we take the values of the nodes of a surface mesh K, which is defined as before as
an approximation of a 2-manifold Mp isometrically embedded in R3. A discrete operator for
such points can be constructed as an alternative to the approximation of the Laplace-Beltrami
operator considered previously.

The NICA operator is valid for one simulation, but for our setting we are considering a sim-
ulation bundle where each simulation is assumed to be obtained through a stochastic realization
ϕi of a nonlinear transformation ϕ from a reference simulation, ϕi :Mr →Mi. In this setting,
available to us is a set of m simulations and our objective is to construct, based only on this
information, an operator that is invariant to the nonlinear transformation ϕ. As explained above,
such operator can be constructed. One starts with one reference simulation and takes all others
to form a cloud around each point in the reference one. Then from this cloud, the covariance
matrix Ck,δ is used to approximate the term Jϕ(p(k))JTϕ (p(k)) and its inverse to being able to
evaluate (5) locally at each point k of the reference simulation. In this way the discrete operator
obtained through (6) is approximately the same for each and everyone of the given m simulation
data sets in the bundle. As a consequence we can write the following proposition, analogous to
the proposition 3.3,

Proposition 3.5. The approximation of the Fokker-Planck operator by L given in (6) with

Wk,l = exp−‖p
(k)−p(l)‖/ε, constructed using the distance (5) which is evaluated using the points

of one reference simulation, is (approximately) the same for all simulations i = 1, . . . ,m in a
simulation bundle, assuming they constitute a simulation cloud around the reference simulation.
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Based on the above results, the operator can be evaluated numerically, the eigenvectors can
be evaluated and the simulation bundle can be projected into this new eigenbasis. We make use
of the distance given in equation (5), evaluated on the nodes of a reference mesh and obtain the
overall process described in algorithm 2.

Algorithm 2: Spectral decomposition of NICA operator

Input: 1) reference simulation xr: A surface embedded in R3, given as N points.
2) data set bundle {xj}, j = 1, . . . ,m: Surfaces embedded in R3, where each one is
given by N points. The points of the xj are assumed to form for each point in xr

a simulation cloud obtained by a nonlinear transformation of the reference
simulation.

Parameter: δ, ε, p
Output: p first eigenvectors of NICA-operator, invariant to a nonlinear transformation

1 foreach k ∈ {1, . . . , N} do . local Jacobi matrices at p(k)

2 empirically estimate local covariance matrix Ck,δ from data set bundle {xj} after (4)
3 JJt[k] = pseudoinverse of Ck,δ · 5/δ2

4 foreach l ∈ {1, . . . , N} do
5 foreach k ∈ {1, . . . , N} do . calculate weight matrix

6 estimate d(k, l) = ‖xrk − xrl ‖R3 after (5) and using JJt[k],JJt[l]
7 W[k, l] = exp(−d(k, l)/ε)

8 foreach k ∈ {1, . . . , N} do

9 D[k, k] =
∑N
l=1 W[k, l]

10 L = D−1W − I . compute graph Laplacian

11 decompose L by [U,S,V] = SVD(L) . non-trivial eigenvectors

12 return p first non-trivial eigenvectors U

3.3.1 Illustrative example

We would like to illustrate the idea of this construction with an illustrative example from [SC08].
Let p = [p1, p2] with p1, p2 uniformly distributed random variables. We are not able to observe
them directly but only after a nonlinear transformations given by η = [η1, η2] with η1 = p1+(p2)3

and η2 = p2 − (p1)3. See figure 1a for a representation of the non-observable variables p and
figure 1b for the observable η after the nonlinear transformation.

The Jacobian Jϕ is not available, but JϕJ
T
ϕ and its inverse can be estimated from the data.

We use algorithm 2 to evaluate the operator. In the example before, we have d = M = 2 and can
construct N (2×2) sample covariance matrices obtained from a set of m observable simulations in
a simulation cloud around each point inMη. The approach assumes that a stochastic simulation
can be performed for a small time step, each one starting from a different initial condition. The
idea is to create a simulation burst (or cloud) around a starting or reference configuration. In
figure 1c we give a representation of a simulation burst for the simple example, here for each
point several stochastic outcomes are shown. By using this cloud, one calculates an estimate
of the distance between the non-observable variables. Constructing the matrix operator and
calculating the eigenvectors of it, one obtains the independent components. Notice that once
the eigenvectors are calculated, they can be used as a common basis for the simulation cloud.
All simulations can therefore be projected into the eigenbasis and one obtains as a result the
spectral coefficients of all simulations.
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(a) non-observable variables (b) observable variables (c) simulation burst for 1b

Figure 1: Illustrative example for NICA. Coloring in (a) is according to x1 and in (b) according to
the coefficient in regard to the first eigenvalue (or first independent component), which essentially
recovers x1. In (c) the different stochastic outcomes for each point have the same color.

4 Approximating a Basis in Simulation Space

The results from propositions 3.3 and 3.5 are remarkable since they suggest that an operator can
be built that is invariant to diffeomorphisms that are isometries with respect to a specific metric.
In other words such an operator is the same for all elements of the space Emb(M,R3)/G(M),
i.e the space of embeddings in R3 that stem from isometric transformations of M. Now an
orthogonal basis can be obtained from the corresponding invariant operators and it can actually
be used as a basis for the space Emb(M,R3)/G(M), this means that through this construction
one can characterize this space along the eigenbasis.

In the discrete setting this is achieved using the orthogonal basis of the operator given in (2)
or (6), the Laplace-Beltrami operator or the NICA operator, respectively. An orthogonal basis
can be constructed since both operators are valid for all elements of the corresponding simulation
space, one can also project these simulations into the obtained basis in each case. Doing that,
in general, will not be of any advantage since, for the case of a discrete approximation of the
operators, we need as many basis elements as the number of nodes N in the mesh in order to
represent each simulation. Nevertheless we will see in section 4.2 that depending on the degree
of smoothness of the functions defined onM, only very few basis elements are needed to recover
the most important parts of the function, i.e. for smooth functions the approximation converges
exponentially. We notice though, that since we are dealing with discrete data, we will have to
calculate approximations of the operators and this implies that one has to actually justify the use
of the eigenvectors as approximations of the corresponding eigenfunctions. This will be studied
in the following.

4.1 Spectral Approximation of the Operators

We have seen in sections 3.2 and 3.3 that, under some specific conditions, a discrete operator
obtained from a discrete dataset converges point-wise to a continuous operator. Nevertheless, a
convergence of the eigenspace is not guaranteed in case of such an operator convergence. We now
would like to describe under which conditions convergence can be expected and if it is reasonable
to assume that these conditions are fulfilled in the discrete case.
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4.1.1 Structure of the Eigenfunctions

The eigenfunctions of the Laplace-Beltrami operator on a surface can be viewed as a general-
ization of the use of a Fourier basis in Euclidean space for the Laplace operator. Using such
eigenfunctions as a basis, a smooth function defined on a surface can be decomposed, so that the
first spectral coefficients correspond to eigenfunctions describing the low frequency part of the
function and the rest corresponds to the high frequency parts of it, see [GN13, JNT01].

For the NICA operator the eigenvector corresponding to the first eigenvalue, in increasing
order, recovers the first independent component, the second one to the second and so on [SC08],
see section 3.3 for the setting. Additionally, in this stochastic setting the first eigenfunctions
(ordered according to increasing eigenvalues) of the Fokker-Planck operator correspond to the
slow variables of a stochastic dynamical system and the independent components can be shown
to be solutions of the Sturm-Liouville differential equations, see again [SC08].

The solutions of those differential equations can be shown to be generators for different type
of polynomials, e.g. Jacobi, Laguerre or Hermite types, see [GUKM08]. In addition, it is also
known that special solutions to the Fokker-Planck equation are polynomials that can be used in
an orthogonal decomposition for less smooth functions [THJ13].

In our setting, an orthogonal decomposition based on the eigenfunctions of some specific
operator will be able to decompose a function into several components. If the function f is
smooth, it is known from spectral approximation theory that the decay of the spectral coefficients
will, depending on the degree of smoothness of the function, achieve exponential convergence for
f ∈ C∞, see e.g. [Cos04]. If the function is not smooth and has for example some discontinuities,
it is also known that the exponential convergence is lost due to the Gibbs phenomena. But at
least in regions away of the discontinuity it can be recovered or improved, see e.g. [GSSV92]. The
approach to control the Gibbs phenomena consists in a change of the basis for the decomposition
to special polynomials. These again can be shown to be solutions of specific Fokker-Planck
type differential equations, see [THJ13]. We notice that in both cases, for smooth and, after
changing the basis, for non-smooth functions we do have a few spectral coefficients that are large
and correspond to the first eigenfunctions, while the rest are smaller. We will return to this
observation, but first let us discuss the discrete setting.

4.1.2 The Discrete Case

In section 3.2, we have reviewed some results that allowed us to obtain convergence of a discrete
mesh-Laplacian to a continuous operator given some conditions on the mesh or some large sam-
pling limit for a point cloud. Little is known about the convergence of the discrete eigenvectors
and eigenvalues to the corresponding continuous eigenfunctions and eigenvalues, this is not ob-
tained from the convergence of the operators. This area is an active field of research, we mention
the following result that follows from [DRW10]:

Theorem 4.1. Given a smooth 2-manifold M and a simplicial mesh K which is an (ε, η)-
approximation of M. Let {λj} and

{
λDj
}

denote the set of non-decreasing discrete eigenvalues

of the Laplace-Beltrami operator ∆M and its approximation LhK (2), respectively. For any fixed
j, we have that

lim
h,ε,η, ε

h4
→0
|λj − λDj | = 0.

The question of convergence of the eigenfunctions using the same construction as given in
[DRW10] is to our knowledge open. We also mention the work in [RBG+09], where the Laplace-
Beltrami eigenvalue problem is discretized using a finite element formulation and as such can be
constructed using convenient convergence properties depending on the mesh size and the degree
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of the shape functions used for the discretization, although the convergence to the eigenspace
has not been treated in this work either. Note that in our case we would like to build an
operator based on the data, so that we have not the flexibility of choosing a discretization like
in [RBG+09].

A different setting to proof convergence is the stochastic one, based on convergence in proba-
bility. We mention here the work in [BN08] where it has been shown that the eigenstructure of the
weighted graph Laplacian converges to that on the manifold and a recent result that extends such
results for the so called Connection Laplacian, where the convergence to the Fokker-Planck oper-
ator is treated as special cases of the more general setting of the Connection Laplacian [StW13].

To summarize, based on the mentioned results, the use of a discrete approximation of the
eigenfunctions of the Laplace-Beltrami and NICA operators can, to a certain extent, be justified
for our approach.

4.1.3 Discrete Orthogonal Decomposition

Once the eigenvectors ψ̄j of some specific discrete operator are given, we can project a given
mesh function f i defined on a mesh Ki along them and obtain as a result a set of spectral
coefficients αij , j = 1, . . . , N . The following expression can be written as an analogous expression
of the continuous case (1):

f i =

N∑

j=1

αijψ̄j , αj = 〈f i, ψ̄j〉, (8)

where N corresponds to the number of nodes on the mesh Ki, which can be very large. Using
the approximation LhK of the Laplace-Beltrami operator a large number of eigenvectors could be
necessary to reconstruct the mesh data, depending on the smoothness of the data, which directly
affects the degree of decay of the spectral coefficients. Nevertheless, the corresponding spectral
coefficients will be large for the coarse parts of the finite element mesh and smaller for the details.
Note that this is a direct consequence of the exponential decay that has been observed for the
continuous case. Such a decay can intuitively also be expected in the discrete case, assuming
convergence conditions for the eigenspace are valid, both for the Laplace-Beltrami operator and
the NICA operator. For non-smooth functions we could instead use eigenvectors of the NICA
operator, which are actually approximations of general polynomial functions and better adapted
to the non-smoothness of the data as discussed in section 4.1.1.

Now assume Kr is a mesh which approximates the reference manifold Mr. Let Mi, i =
1, . . . ,m be the manifolds obtained by the application of diffeomorphisms ϕi with corresponding
approximations given by ϕi|Ki on the mesh Ki. Let the function f : Mr → R be evaluated at

the nodes of the mesh and let f i :Mi → R be the resulting functions after the application of ϕi.
The functions fr, f i correspond in our setting to the numerical solutions of a partial differential
equation using the finite element method. Further, for simplicity we assume that the functions
fr, f i are k-times differentiable. Under these conditions the following holds:

Proposition 4.2. Let an orthogonal basis consisting of N eigenvectors ψj, j = 1, . . . , N be
given, which is obtained from the approximation of the Laplace-Beltrami operator (2). Then all
mesh functions f i can be represented as

f i =

N∑

j=1

αijψj ,

where αij are the spectral coefficients obtained by the projection of f i into the eigenvector basis

{ψj}Nj=1.
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Proof. This is a consequence of the application of (2), under the assumption that the basis is
invariant under isometric transformations, see proposition 3.3.

For the NICA operator (6), we are in a stochastic setting. Let a set of simulations be
represented as functions f i :Mr → R obtained as realizations of an independent stochastic Ito
process. This operator approximates a Fokker-Planck operator which is invariant to a nonlinear
transformation as considered in section 3.3. Furthermore, we assume convergence in probability
to the eigenfunctions of the continuous NICA operator. Under these conditions, we can write

Proposition 4.3. Let an orthogonal basis consisting of N eigenvectors ψj, j = 1, . . . , N be
given, obtained from the approximation of the Fokker-Planck operator as given in (6), then all
functions f i can be represented as

f i =
N∑

j=1

αijψj , (9)

where αij are the spectral coefficients obtained by the projection of f i into the eigenvector basis
{ψj}.

Proof. This is a consequence of the application of equation (6), under the assumption that the
basis is invariant under nonlinear transformations (see proposition 3.4).

As explained in the previous sections, we use operators that are invariant under a specific
transformation. As a consequence we can project a set of mesh functions along the same basis
for functions defined on a set of meshes. This property, combined with the observation about the
possibility of achieving a strong decay behavior of the spectral coefficients, suggests a method
for data analysis which potentially reduces the dimensionality of the data along the spectral
coefficients. In other words, only a few coefficients correspond to large variations in the finite
element data (the coarse ones) or to the slow variables in an stochastic system for more general
point clouds, respectively.

4.2 Approximation Properties

Note that we here only consider the stochastic setting. We will show that under some conditions
one can expect a strong decay of the spectral coefficients depending on the orthogonal functions
used and the smoothness properties of the data.

As before, we focus on numerical simulations, where we know the approximation properties
since the data stems from a finite element mesh which discretizes a partial differential equation.
The smoothness of the solution, combined with the considerations about the spectral approx-
imation estimation based on discrete data, allows us to obtain an estimation that depends on
the smoothness of the function and therefore clarifies the observed strong decay of the spectral
coefficients, at least for a simplified setting.

We assume that we have obtained an orthogonal decomposition (9), then the following result
holds

Proposition 4.4. (Decay of the Spectral Coefficients) In the orthogonal expansion given in (9),
under suitable assumptions the first few coefficients decay very fast, depending on the degree of
smoothness of the functions fr, f i, i = 1, . . . ,m.

For the proof we combine the following three results.
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Proposition 4.5. [SC08] Given the eigenvalue problem for the Fokker-Planck operator (7), the
operator can be separated by the use of an orthogonal transformation and it can be shown that the
separated problems are 1D backward Fokker-Planck-like operators with Neumann boundary con-
ditions. The solution of the eigenvalue problems with such operators corresponds to the solution
of Sturm-Liouville problems.

Note that the density function µ in (7) is separable [SC08], therefore the solution is obtained
in terms of 1D Sturm-Liouville problems with Neumann boundary conditions.

We now consider the solution of the 1D Sturm-Liouville problem. It is known, see [Moh06]
and the references therein, that solutions of the 1D Sturm-Liouville eigenvalue problems for
specific boundary conditions are orthogonal polynomials. Such polynomials can be used as a
basis for a spectral approximation of a general function f .

Proposition 4.6. Let f ∈ Ck and its spectral approximation be given by fN =
∑N
j=1〈f, ψj〉ψj,

where ψj is an orthogonal polynomial solution of a Sturm-Liouville eigenvalue problem, then the
following holds,

‖f − fN‖ ≤ C

Nk
.

In particular if f ∈ C∞, then it can be shown that the decay is exponentially fast, i.e if

εN = |f − fN | =
∞∑

r>N

< f,ψr > ψr,

then for this case
εN = O(e−cN ), c > 0.

Continuing in view of the main result, we notice that proposition 4.6 cannot be used directly
for our case since only discrete data is available there. To be able to apply the continuous result
to the discrete case we need the next result

Proposition 4.7. [DJ94] The estimation error between a function and its discrete approxima-
tion is related to the N -term approximation using an orthogonal basis function decomposition
and the rate of decay depends on the smoothness of the continuous function that is approximated.

Now we have all elements that help us to give a sketch of the proof for proposition 4.4, for
full details see [Ter16].

Proof sketch. By proposition 4.5 we know that the continuous Fokker-Planck operator (7) is
separable into 1D Sturm-Liouville problems whose solutions are orthogonal polynomials. From
spectral theory (see proposition 4.6) it is known that the decay of the spectral decomposition of
a general function f using orthogonal polynomials depends on the smoothness of the function f .
Finally using proposition 4.7, we justify this last result for our case, where we only have discrete
data approximating f .

5 Data Analysis Method

Our application interest is the analysis of many simulation results which are obtained from the
numerical solution of PDEs with finite elements. In previous sections we developed a theoret-
ical setting which enables us to develop a new method for analyzing the (quotient) space of
simulations.
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5.1 Method Fundamentals

Let us recapture the elements of our method:

• a transformation group Λ, for example Isom(M)

• a metric space Emb(M,R3), where the group acts on

• invariant generalized coordinates of Emb(M,R3)/G(M)

• a transformation, which we call the invariantization transform, sending an element of
Emb(M,R3) to the invariant space Emb(M,R3)/G(M).

As before, we assume that all simulations stem from a 2-manifold M. Additionally, we use a
discrete representation of a function f i evaluated on a mesh Ki. The data analysis method now
consists of the following steps, see also algorithm 3:

1. construct a positive semidefinite operator that is invariant to a specific transformation,

2. obtain an orthogonal decomposition using as basis the eigenvectors of the operator,

3. project the dataset into this orthogonal basis.

Usually one performs a thresholding of the coefficients based on the decay properties.

Algorithm 3: Algorithm for Dimensionality Reduction

Input: m simulations f i ∈ RN , i = 1, . . . ,m, where N is the number of nodes
Parameter: embedding dimension p
Output: reduced representation [α̂1, α̂2, . . . , α̂m] with each α̂i ∈ Rp

1 Up = p first eigenvectors of either the Laplace-Beltrami operator (algorithm 1) or the
NICA operator (algorithm 2)

2 foreach i in {1, . . . ,m} do
3 α̂i = Up × f i ∈ Rp . compute p-dimensional embedding

In a certain sense we obtain in step 3 invariant coordinates due to the eigenvector basis,
which is a discrete approximation of the basis of the space Emb(M,R3)/G(M). Since the
basis is obtained from an invariant operator, these projection coefficients reflect the group action
required to obtain a specific simulation. As seen in section 4.2, under some conditions the coe-
fficients have a strong decay, therefore the “essential” part of a dataset is concentrated in a few
coefficients. This allows a dimensionality reduction of a data set of simulations in a multi-scale
fashion. As shown, and will be seen in the experiments, the first few coefficients correspond to
the essential parts, the later ones are less relevant and can be geometrically associated with high
frequency parts or details, at least for the Laplace-Beltrami operator. Depending on the decay
of the coefficients, we can use only the first few spectral coordinates to analyze the variability of
all simulation data.

Note that such a method for dimensionality reduction of a simulation bundle can be justified
by using the invariance and the approximation results of the previous sections applied to such
a bundle. Assuming enough regularity of the functions being approximated by the simulations,
the obtained approach establishes that the essential principal variations of a dataset bundle
correspond to the coarse variations and that the other variations concentrate along the details.
We express this using the following corollary of proposition 4.4.
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Corollary 5.1. A multi-scale dimensionality reduction of a data set bundle
{
f i
}
i=1,...,m

can

be achieved using the spectral coordinates αij , i = 1, . . . ,m, j = 1, . . . , N found by projecting
all simulations to the same orthogonal base constructed with an invariant operator. The low
dimensional part corresponds to the coarse variations of the data set bundle.

Note that up to dimension three the projection coefficients can be used directly as embed-
ding coordinates for visualization. If more coefficients are required to capture the data, a further
method of dimensionality reduction can be used to obtain an embedding up to dimension three.
In particular, we use diffusion maps for further dimensionality reduction [CL06, BGIT+13, Iza14].
This method constructs a similarity matrix between the simulations based on their projection
coordinates and uses the eigenvectors of this matrix, after a normalization, to obtain low dimen-
sional embedding coordinates.

Use of a single spectral basis for all simulations also naturally enables the construction of low
dimensional representations for time dependent problems. Given a time dependent data set, one
repeatedly calls algorithm 3 for each time step.

To summarize, the approach using the described eigenbasis has the following properties:

• A reconstruction of simulation data based on only a few coefficients (p < 20) with a small
error (usually < 5%).

• An extraction of useful low dimensional information in the largest spectral coefficients that
parameterize all data.

• A natural simultaneous treatment of many time steps.

• A reconstruction of out-of sample data not available in the training set with good precision.
In other words, simulations for a specific input parameter combination, not in the training
set, can be approximated based on the given training data and embedding coordinates.

These properties of our multi-scale approach will be demonstrated in section 6 on real prob-
lems.

5.1.1 Comparison with Principal Component Analysis

Due to its simplicity, the PCA is one of the most employed methods for dimensionality re-
duction [LV07], we compare against it as a baseline method. Given a dataset X = {X1, X2,
. . . , Xm}, Xi ∈ Rn a very efficient way of representing the variability of the datasets is the SVD
decomposition given by [USV ] = svd(Xc), where Xc is a centered representation of X, U is a
matrix, S is a diagonal matrix whose diagonal elements are the singular values corresponding
to the eigenvectors in U , and V is the complementary base. If the eigenvalues are ordered in
descending order, than the first eigenvector correspond to the first main variation of the dataset,
the second to the second and so on. Often only a few coefficients are necessary to reconstruct
each data so that Xi ≈ ∑p

k=1〈Uk, Xi〉Uk with p < m � n. The approach then reduces to the
calculation of p eigenvectors. Underlying the PCA is also the preservation of Euclidean distances
in the high dimensional space [LV07].

In the case of numerical simulations in a finite element space, each simulation can be consid-
ered as a point in Rn, n = 3N , where N is the number of vertices, in order to apply the PCA.
Comparing the basis for the PCA, Laplace-Beltrami operator and NICA operator one observes
significant differences. PCA can concentrate the variability of the data in just m coefficients,
where m is the number of simulations available. The other operators are bigger, of the order
of the number of nodes N , but the first coefficients are large in comparison with the rest and
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that is the reason why we use them for data analysis. Those coefficients can be shown to be
related to the coarse part of the geometry for the Laplace-Beltrami operator [KG00] and to
the first nonlinear components for the NICA operator [SC08]. For the PCA, if we attempt to
view it as an operator, the first coefficients are related to the variability of the data and not
to a smooth part of the geometry nor any nonlinear component. While the PCA recovers in
the first 3 coefficients more information than any of the other methods, unfortunately this fact
can be used only if the variability of the data can be adequately represented based on those
coefficients. If the data is localized around a nonlinear manifold or, in other words, if there is
some nonlinear dependence on a few intrinsic parameters, then other methods are needed. The
operator approach suggested in this paper proposes a way to obtain the information about this
low dimensional structures, we can decompose the data variability in a flexible way by changing
the operator, which is constructed to preserve some quantity or property.

5.2 Operator Invariance Dependence

Taking a closer look at the proposed method, the important step is the construction of the opera-
tor. For example pose invariance of a deformation can be achieved using an approximation of the
Laplace-Beltrami operator constructed using geodesic distances in the finite element mesh. For
an stochastic Ito process one can even obtain invariance to a general nonlinear transformation.
After obtaining discrete approximations of these operators, we project the data to the eigen-
vectors of the spectral decomposition and obtain a new representation. Assuming a decreasing
order of the eigenvalues and a fast decay of the spectral coefficients, most of the “energy” of the
data is concentrated in the first few components.

In the continuous case, it has been shown that the operators we use have a discrete spec-
trum and that additionally the eigenfunction build a multi-scale decomposition using nodal
sets [RBG+09]. Those properties are also available under the discussed convergence conditions
for the discrete case, so that the proposed analysis method has a multi-scale structure which is
also flexible, in the sense that one can influence what is considered as coarse scales through the
local invariant distance. For example in case of the Laplace-Beltrami operator we have the usual
decomposition of a mesh function into coarse parts and details; using a NICA operator our scales
will be the independent components.

The approach is very flexible if we manage to identify the correct invariant operator corre-
sponding to the way simulations are assumed or observed to behave under change of parameters.
Let us recall the invariance property for the investigated operators according to this. For example,
if they show only rigid changes (rotations or translations), then we can use a Laplace-Beltrami
operator with a kernel using the Euclidean distance since this operator is rotation and transla-
tion invariant. In the case of non-rigid transformations like deformations that modify the shape
arbitrarily, but does not tear or shrink the shape, we can use the Laplace-Beltrami operator
with a kernel using a geodesic distance approximated in the mesh by the graph distance. The
operator constructed in this way will then be invariant to deformations that preserve geodesic
distances. Finally, we could also have an arbitrary nonlinear transformation that brings one
simulation to the next one, employing the NICA operator we obtain an invariance to such a
nonlinear transform.
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6 Applications for the Analysis of Finite Element Simula-
tion Bundles

Finite element simulations in industry are nowadays used to study the physical behavior of prod-
ucts. We consider the example of car parts under deformations due to a crash. The development
of new car models demands the creation of thousands of simulations where some material pa-
rameters or the geometry are varied. The analysis of the combined effect of those changes in the
crash behavior is an open problem and designs are nowadays made based on engineering judg-
ment in a time consuming trial and error process. We illustrate in this section the application
of our proposed data analysis method to the case of crash simulations. While all three operators
outlined in section 5.2 can achieve an effective dimensionality reduction for this data, we will
concentrate on the Laplace-Beltrami operator with geodesic distance to focus and simplify this
section. Results for the NICA-operator will be presented in a companion paper.

6.1 Finite Element Signal Decomposition

First, we investigate the decomposition into coarse parts and details of a function on a mesh
stemming from crash simulations. We consider a frontal crash simulation of a Chevrolet C2500
pick-up truck, a model with around 60,000 nodes from the National Crash Analysis Center2. We
use 126 simulations3 of a vehicle frontal crash where 9 part thicknesses are varied randomly by
up to ±10%. The variation in the thickness of these 9 parts results in different deformations
of the original structure, see also [BGIT+13]. The approximation of the Laplace-Beltrami op-
erator using geodesic distances is calculated as described in section 3.2 using the initial mesh
configuration. The eigenvectors of the operator can then be used to evaluate the scalar product
αij = 〈f i, ψj〉 and obtain the spectral coefficients for any mesh function.

6.1.1 Decompositions of Deformation and Mesh Associated Variables

The deformations of the mesh for one simulation are now the considered mesh functions f i, one
for each coordinate x, y and z, i.e. 3 per simulation. Using the same connectivity of the original
mesh, we can reconstruct the mesh deformations, separately for the x, y, and z coordinates,
using f i =

∑p
j=1 α

i
jψj for several values of p.

From figure 2a, it can be clearly seen that using p = 20 only a very coarse approximation of
the part can be reconstructed. Adding more values, e.g. p = 100, recovers more details of the
part. It can also be clearly seen in figure 2b that most of the coefficients are small, with a few
bigger ones. This is an essential feature which will be exploited for a classification task in section
6.1.2.

So far, we were able to show that the geometry of a car part can be represented using an
orthogonal basis of the eigenvectors of an operator. But, any function f ∈ Ck(M) on the mesh
can be represented by the linear combination of the eigenvectors. This implies that also other
variables associated to each node can be represented using the same orthogonal basis, this can
be used for variables like nodal strains, temperatures, velocities, and so on.

We now demonstrate this with an example, where the nodal variable is the absolute difference
between two time steps (6 and 7) of the car crash simulation. For figure 3 the difference is
reconstructed using different values of p and it can be seen that with p = 20, compared with
p = 200 and with the original data, almost the original color distribution is obtained for the
nodal variable.

2http://www.ncac.gwu.edu/
3Computed with LS-DYNA http://www.lstc.com/products/ls-dyna
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(a) Using the first p coefficients for the reconstruction, p = 20
coefficients (upper), p = 100 (lower) and original data (middle)
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(b) Magnitude of spectral coefficients
for x, y and z coordinates, respectively.

Figure 2: Analysis of a multi-scale reconstruction of a deformed shape.

(a) p = 20 (b) p = 200 (c) original difference

Figure 3: Reconstruction of the differences between two time steps using p coefficients.
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Figure 4: Comparison of diffusion maps embeddings for the car crash data using different number
of spectral coefficients in the distance computation between the data points.

6.1.2 Data Analysis of Deformations in Crash Simulations

In [BGIT+13] this data set was used for nonlinear dimensionality reduction. There, the norm
of the difference of the deformations between the two time steps 6 and 7 was used as the nodal
value. A total of m = 116 simulations were used with f ik =

√
‖xik − yik‖, where xik, y

i
k ∈ R3, k =

1, . . . , N = 1714, and xik, y
i
k denote the position of grid point k of simulation i at the time step

6 and 7, respectively. Based on this m × N dimensional data a lower-dimensional embedding
was computed using diffusion maps, see [BGIT+13, Iza14] for details. With this data analysis
approach one was able to successfully identify buckling modes and input parameter dependences.

To demonstrate the usefulness of our approach we investigate the use of the spectral coeffi-
cients as input to the nonlinear dimensionality reduction procedure. We project as before all m
vectors f i along the eigenvectors of the approximation of the Laplace-Beltrami operator obtained
in section 6.1. The result is a set of coefficients also in RN , where N is the number of nodes
of the deformed beam. The coefficients decay very fast, i.e. similar to figure 2b, the energy of
the signal is concentrated in very few coefficients and, as we presented in the theoretical part,
one can equivalently use these coefficients instead of the original vectors of differences. Due to
the decay, we just would like to keep the most significant ones and compare the embedding with
diffusion maps using the first p = 4 and p = 20 coefficients with the embedding obtained using
all the differences in RN . Figure 4 shows a comparison of these embeddings, where each point
corresponds to the embedding of one f i. The color of the points is given by the value of one
of the varied plate thicknesses. It shows that this one has a high correlation with the result-
ing clustering of the deformation results and therefore graphically verifies the differences in the
classification due to the eigenvectors.

It is interesting to see that with only p = 4 the structure of the embedding is almost the same
and can be used for classification instead of using the original information of size N = 1714. This
has a number of implications, but the important one is that the embedding is actually completely
dominated by the first few components in the orthogonal decomposition, which correspond to
the coarse variations.
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6.2 The Pre-image Problem in Crash-Simulation

The use of dimensionality reduction in applications is characterised through the interplay be-
tween the so called restriction and extension phases. This has already being studied in several
applications like image processing and earth structure classification, see [TESK11, KHC12]. We
elaborate on this for a particular application in crash simulation.

Given a training set of data in a high dimensional space RN , dimensionality reduction meth-
ods extract a low dimensional representation in Rp, p� N in such a way that each of the training
data can be identified with an element in this new space, this is sometimes called the restriction
phase. Such a mapping can be done in several ways and generally one tries to preserve some
property of the high dimensional space like geometric distance or the topology (see [LV07] for
a detailed description). The structure of the embedding should allow to find the corresponding
position in the lower dimensional space for any new test data point in the higher dimensional
space.

Ideally, after obtaining this parameterization, one would like to obtain a high dimensional
approximation that corresponds to a specific point in the low dimensional representation not in
the training set. This is very important for applications in image segmentation and denoising.
Given some embedding coordinates, this so called extension phase now enables the reconstruction
of the corresponding high dimensional data set in RN . This is an ill posed problem since the
same embedding coordinates could correspond to different high dimensional extensions. How to
find them is known as the pre-image problem and has been extensively studied and is still an
open problem, see e.g. [KHC12].

The use of the proposed operator approach introduces a transformation with a fundamental
simplification, the pre-image now gets parameterized with very few coefficients that are able to
reconstruct a coarse version of the analysis quantity, e.g. in the example from section 6.1.2 with
as few as four parameters.

We now investigate the application of the method to the pre-image problem in crash sim-
ulation, where it has another very interesting property, namely it corresponds to obtaining an
approximation of a numerical simulation without using the finite element software. Note that
crash simulation is a highly nonlinear process and trying to interpolate between existing simula-
tions based on the original input parameter space will in general not produce satisfactory results.
Since one simulation of a real model in the car industry takes several hours using up to hundreds
of computing nodes, the advantage is clear if one would be able to get an approximate behavior
without investing that huge amount of computing resources. An approach in this direction was
presented in [BGIT+13].

We use again the data set from section 6.1, a frontal crash simulation a truck with around
60,000 nodes and 17 time steps. A total of 126 simulations were obtained by varying randomly
the thickness of 9 structural components, 116 data sets are used for the training phase and 10
data sets are used for testing the approach. As in section 6.1.2 the difference between time step
6 and 7 is used as our analysis variable. Figure 5 shows two examples of the distribution of
the values of the difference on the analyzed part (we take the difference between two arbitrary
selected datasets), as expected the squared differences are large for arbitrary selected datasets.

We use the training data set and construct an operator as described in section 6.1.2, to find
a low dimensional embedding. For the 10 test data, we use only the coordinates in the 3D
embedding and based only on these coordinates, we take the immediate nearest neighbor as
an approximation to the actual low dimensional embedding coordinates of the test data. Note
that we do this only to measure the quality of the low dimensional embedding in predicting the
relative positions of the data in the low dimensional setting, and use this as an indication for
the reconstruction properties. Figure 5c shows the mean of the error over 10 reconstructed data
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(a) example 1 (b) example 2 (c) mean reconstruction error

Figure 5: a), b): We consider deformations between two consecutive time steps. Shown in each
picture are the differences of the deformations between two arbitrarily choosen simulations from
the training data. c): Mean of the reconstruction error over 10 test data.

sets. For other nonlinear dimensionality reduction procedures, e.g. diffusion maps, we observed
in the course of our research that using the nearest neighbor in the low dimensional coordinates
does produce on average worse “reconstruction” results.

We can see that using the embedding coordinates from the training set a reconstruction of
simulation results of several test data appears possible. The results shows that we can obtain a
rather good approximation of the high dimensional test data as measured by the mean of the error
for all test data sets, see figure 5c. A detailed investigation of this approach for the reconstruction
or prediction of “virtual” numerical simulations using a combination of the eigenvectors is surely
warranted, but out of scope of the current work which focuses on data analysis.

6.3 Time Dependent Analysis of Crash Simulations

The properties of the introduced approach allow also the efficient analysis of time dependent
information, this is due to the use of a common basis for all simulations and time steps. Car
crash simulations are strongly time dependent, in very few milliseconds the structure of a car
can deform strongly. Furthermore, an unstable behavior can originate from small variations in
the material properties, initial load conditions or numerical conditioning. This phenomenon is
called buckling and is a serious problem for the robust design of car components. Relevant for
an engineer is not only the identification of principal bifurcation modes, but also the study of
the time of origin of the unstable behavior.

Our approach now allows a time dependent analysis of such unstable deformation character-
istics. We use the same Chevrolet truck example as before, but to visualize the time dependent
behavior we employ more time steps and therefore now use 167 simulations and 141 time steps,
where again 9 plate thicknesses are varied. Figure 6 shows an example where the deformation
behavior over time for these simulations is displayed, where the color indicates the time. To ob-
tain the shown 3D embedding we proceed along the lines of section 5 using the Laplace-Beltrami
operator in algorithm 3 for the initial mesh and using the obtained eigenvectors to represent all
simulations over all time steps.

There are several observations that can be made from the obtained configuration in figure 6.
We see that the reduced coordinates of the simulations give an organization of the data in time.
A bifurcation clearly starts about half-way during the crash simulation, while one can see how
the positions of the simulations for the last time steps appear mixed with those before. This
corresponds with the rebound effect in a crash, where the car bounces back from the obstacle
after the inertia of the movement was absorbed.

Other embedding methods can be applied to the same data, but dealing with all time steps
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Figure 6: Reduced 3D representation of 23547 (167 simulations×141 time steps) time dependent
simulation results, obtained by the spectral decomposition of the Laplace-Beltrami operator. The
coordinates of each point, which indicates a simulation at a specific time, are the first spectral
coefficients for each direction x, y, and z of the movement of the car, they are colored according
to the corresponding time step of the simulation.

simultaneously is very limited. The usual approach is to use the PCA for time dependent analysis
as well, so as a first example let us calculate it using all simulations from one time step, where the
bifurcation is clearly present. The spectral coefficients obtained by projecting the deformations
for some selected time steps along these principal components gets the low dimensional structure
shown in figure 7a, this approach does not produce adequate results since the variability over
all time steps is not taken into account. Computing a PCA using all simulations and time steps
does improve the results, but only to some degree, see figure 7b. Although a time behavior is
now visible and a small separation is recognizable near the end, the clear separation and different
results due to the bifurcation cannot be recognized in the embedding, in particular not the time
of origin as is the case in figure 6.

Other nonlinear dimensionality reduction methods could in principle be used for dealing with
this data set. But then, either the embedding method has to be computed as many times as time
steps are available, where the switching of the eigenvectors makes recovering a time dependent
low dimensional structure very cumbersome, if at all possible. Alternatively, one could attempt
to embed other time steps into the coordinates obtained from one time step using the Nyström
method, but this is as limited as the PCA example before. Using all simulations and all time
steps is not feasible since one has to deal with large full matrices, and cannot go to a formulation
in the size of the mesh, or relevant parts of it, as is possible for PCA or our approach.

7 Summary and Discussion

Investigating bundles of finite element simulations in industrial applications is a challenge, due to
the high dimensionality and complexity of the dataset. We presented an analysis approach that
can cope with this problem based on a new method for dimensionality reduction. The method is
based on the assumption that all simulations are obtained from the transformation of a reference
configuration, in particular we pose this problem in an abstract setting where all simulations are
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(a) Embedding using a PCA representation
computed from one time step.

(b) Embedding using a PCA representation
computed from all time steps.

Figure 7: Reduced 3D representation of simulations over several time steps, obtained with PCA.
The points indicate a simulation at a specific time and are colored according to the corresponding
time step of the simulation.

in the quotient space of all embeddings of a manifold in R3 modulo a transformation group. All
simulations are represented in a new basis derived from an operator invariant to a specific trans-
formation group, it is shown that under certain approximation conditions only few components
are required in this new basis to recover the essential behavior of the simulation data. Industrial
examples are presented that show the properties of this new method.

The presented first applications of this method show promising possibilities for the analysis
of finite element data from simulation bundles. Further research is necessary in order to an-
alyze the consequences of the assumptions made on the theoretical setting, analyze the use of
other operators invariant to a more general transformation, e.g. not in the setting of stochastic
realizations, and also whether there are other areas where this analysis method can be used.

The use of a new basis that capture intrinsic properties of the dataset demands on the one
side a larger number of components then using principal component analysis, on the other hand
this is precisely necessary to allow for a larger range of degrees of freedom that are not available
using principal component analysis. We conjecture, that the use of this larger basis in a learning
setting provides a much better generalization ability for cases that are not available in the training
set. Noting that considerable efforts are invested in industrial product development for finding
optimal designs in a global optimization approach, which is highly compute intensive due to the
large amount of variables, we conjecture that the use of the proposed method has the potential
to reduce this complexity by several orders of magnitude.

From the theoretical point of view, we used an abstract setting that incorporates the general
framework of shape analysis for this type of data. The link to the theoretical treatment of the
quotient space Emb(M,R3)/Diff(M) is to be explored in more detail, especially if one would
like to evaluate geodesics as in the shape space setting. This introduces the research question of
designing efficient algorithms for calculating geodesic paths in simulation spaces.

We note that the reduced basis method (RBM) [QMN16] can be understood as a spectral
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method, where also a problem dependent approximation basis is used. In discussing the approx-
imation properties of our method, we used a link to the spectral method and therefore expect a
close relationship to the reduced basis method. Initial investigations for using the basis computed
by our approach in an RBM-context do look promising.

Finally, the use of our approach in other industrial contexts is yet to be explored in detail. For
example, we currently investigate the alignment of experimental measurement data in the form
of point clouds from a real car crash in a crash facility with numerical simulation data. Here
the aim is to find the corresponding numerical simulation to the measured point cloud data,
for example to validate the numerical simulation approach or the involved material parameters.
Such an alignment seemingly can be easier achieved in the eigenbasis obtained from the NICA
operator.
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