Institute for Numerical Simulation
Rheinische Friedrich-Wilhelms-Universität Bonn
maximize

Publications

All publications

INS Preprints

The following listing shows only those publications which are uniquely identified by an INS preprint number.
Please refer to the list above to browse all publications.

Publications of Prof. Dr. Daniel Peterseim:

[1] D. Gallistl and D. Peterseim. Numerical stochastic homogenization by quasi-local effective diffusion tensors. 2017. INS Preprint No. 1701.
bib | arXiv | .pdf 1 ]
[2] P. Henning and D. Peterseim. Crank-Nicolson Galerkin approximations to nonlinear Schrödinger equations with disorder potentials. 2016. INS Preprint No. 1621.
bib | .pdf 1 ]
[3] D. Gallistl and D. Peterseim. Computation of local and quasi-local effective diffusion tensors in elliptic homogenization. 2016. INS Preprint No. 1619.
bib | arXiv | .pdf 1 ]
[4] G. Li, D. Peterseim, and M. Schedensack. Error analysis of a variational multiscale stabilization for convection-dominated diffusion equations in 2d. ArXiv e-prints, 2016. Also available as INS Preprint No. 1612.
bib | arXiv | .pdf 1 ]
[5] G. Li, D. Peterseim, and M. Schedensack. Error analysis of a variational multiscale stabilization for convection-dominated diffusion equations in 2d. ArXiv e-prints, 2016. Also available as INS Preprint No. 1612.
bib | arXiv | .pdf 1 ]
[6] P. Hennig, M. Kästner, P. Morgenstern, and D. Peterseim. Adaptive Mesh Refinement Strategies in Isogeometric Analysis - A Computational Comparison. Comp. Meth. Appl. Mech. Eng., 316:424–-448, 2017.
bib | DOI | arXiv | http | .pdf 1 ]
[7] D. Peterseim and R. Scheichl. Robust numerical upscaling of elliptic multiscale problems at high contrast. Computational Methods in Applied Mathematics, 16:579-603, 2016.
bib | DOI | arXiv | .pdf 1 ]
[8] D. Peterseim and M. Schedensack. Relaxing the CFL condition for the wave equation on adaptive meshes. J. Sci. Comput., 2017. Online First.
bib | DOI | arXiv | .pdf 1 ]
[9] D. Gallistl, P. Huber, and D. Peterseim. On the stability of the Rayleigh-Ritz method for eigenvalues. 2017. Accepted for publication in Numerische Mathematik. Available as INS Preprint No. 1527.
bib | .pdf 1 ]
[10] D. Brown, D. Gallistl, and D. Peterseim. Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations. In M. Griebel and M. A. Schweitzer, editors, Meshfree Methods for Partial Differential Equations VII, Lecture Notes in Computational Science and Engineering. 2016. Accepted for publication. Also available as INS Preprint No. 1526.
bib | arXiv | .pdf 1 ]
[11] A. Målqvist and D. Peterseim. Generalized finite element methods for quadratic eigenvalue problems. ESAIM Math. Model. Numer. Anal., 51(1):147-163, 2017.
bib | DOI | arXiv | .pdf 1 ]
[12] A. Buffa, C. Giannelli, P. Morgenstern, and D. Peterseim. Complexity of hierarchical refinement for a class of admissible mesh configurations. Computer Aided Geometric Design, 47:83-92, 2016.
bib | DOI | http | .pdf 1 ]
[13] D. Peterseim. Variational multiscale stabilization and the exponential decay of fine-scale correctors. In G. R. Barrenechea, F. Brezzi, A. Cangiani, and E. H. Georgoulis, editors, Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, volume 114 of Lecture Notes in Computational Science and Engineering. Springer, May 2016. Also available as INS Preprint No. 1509.
bib | arXiv | .pdf 1 ]
[14] D. Gallistl and D. Peterseim. Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Comp. Meth. Appl. Mech. Eng., 295:1-17, 2015.
bib | DOI | arXiv | .pdf 1 ]
[15] D. Peterseim. Eliminating the pollution effect in Helmholtz problems by local subscale correction. Math. Comp., 86:1005-1036, 2017.
bib | DOI | arXiv | .pdf 1 ]
[16] D. Brown and D. Peterseim. A multiscale method for porous microstructures. SIAM MMS, 14:1123-1152, 2016.
bib | DOI | arXiv | .pdf 1 ]
[17] P. Morgenstern and D. Peterseim. Analysis-suitable adaptive T-mesh refinement with linear complexity. Computer Aided Geometric Design, 34:50-66, 2015. Also available as INS Preprint No. 1409.
bib | DOI | http | .pdf 1 ]
[18] P. Henning, P. Morgenstern, and D. Peterseim. Multiscale partition of unity. In M. Griebel and M. A. Schweitzer, editors, Meshfree Methods for Partial Differential Equations VII, volume 100 of Lecture Notes in Computational Science and Engineering, pages 185-204. Springer International Publishing, 2015.
bib | DOI | http | .pdf 1 ]

SFB611 Preprints

Preprints of the SFB611 can be found at http://sfb611.iam.uni-bonn.de.