Institute for Numerical Simulation
Rheinische Friedrich-Wilhelms-Universität Bonn
maximize

Publications

All publications

INS Preprints

The following listing shows only those publications which are uniquely identified by an INS preprint number.
Please refer to the list above to browse all publications.

INS preprints of Research group of Prof. Dr. Daniel Peterseim

[1] D. Gallistl and D. Peterseim. Numerical stochastic homogenization by quasi-local effective diffusion tensors. 2017. INS Preprint No. 1701.
bib | arXiv | .pdf 1 ]
[2] P. Henning and D. Peterseim. Crank-Nicolson Galerkin approximations to nonlinear Schrödinger equations with disorder potentials. 2016. INS Preprint No. 1621.
bib | .pdf 1 ]
[3] D. Brown and D. Gallistl. Multiscale sub-grid correction method for time-harmonic high-frequency elastodynamics with wavenumber explicit bounds. 2016. INS Preprint No. 1620.
bib | arXiv | .pdf 1 ]
[4] D. Gallistl and D. Peterseim. Computation of local and quasi-local effective diffusion tensors in elliptic homogenization. 2016. INS Preprint No. 1619.
bib | arXiv | .pdf 1 ]
[5] D. Gallistl. Variational formulation and numerical analysis of linear elliptic equations in nondivergence form with Cordes coefficients. Siam J. Numer. Anal., 2017. Accepted for publication.
bib | arXiv | .pdf 1 ]
[6] G. Li, D. Peterseim, and M. Schedensack. Error analysis of a variational multiscale stabilization for convection-dominated diffusion equations in 2d. ArXiv e-prints, 2016. Also available as INS Preprint No. 1612.
bib | arXiv | .pdf 1 ]
[7] P. Hennig, M. Kästner, P. Morgenstern, and D. Peterseim. Adaptive Mesh Refinement Strategies in Isogeometric Analysis - A Computational Comparison. Comp. Meth. Appl. Mech. Eng., 316:424–-448, 2017.
bib | DOI | arXiv | http | .pdf 1 ]
[8] D. Peterseim and R. Scheichl. Robust numerical upscaling of elliptic multiscale problems at high contrast. Computational Methods in Applied Mathematics, 16:579-603, 2016.
bib | DOI | arXiv | .pdf 1 ]
[9] D. Peterseim and M. Schedensack. Relaxing the CFL condition for the wave equation on adaptive meshes. J. Sci. Comput., 2017. Online First.
bib | DOI | arXiv | .pdf 1 ]
[10] D. Gallistl. Stable splitting of polyharmonic operators by generalized Stokes systems. Math. Comp., 2016. Accepted for publication. Also available INS Preprint No. 1529.
bib | .pdf 1 ]
[11] M. Schedensack. A new discretization for mth-Laplace equations with arbitrary polynomial degrees. SIAM J. Numer. Anal., 54(4):2138-2162, 2016. Also available as INS Preprint No. 1528 and arXiv e-print 1512.06513.
bib | DOI | arXiv | .pdf 1 ]
[12] D. Gallistl, P. Huber, and D. Peterseim. On the stability of the Rayleigh-Ritz method for eigenvalues. 2017. Accepted for publication in Numerische Mathematik. Available as INS Preprint No. 1527.
bib | .pdf 1 ]
[13] D. Brown, D. Gallistl, and D. Peterseim. Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations. In M. Griebel and M. A. Schweitzer, editors, Meshfree Methods for Partial Differential Equations VII, Lecture Notes in Computational Science and Engineering. 2016. Accepted for publication. Also available as INS Preprint No. 1526.
bib | arXiv | .pdf 1 ]
[14] A. Målqvist and D. Peterseim. Generalized finite element methods for quadratic eigenvalue problems. ESAIM Math. Model. Numer. Anal., 51(1):147-163, 2017.
bib | DOI | arXiv | .pdf 1 ]
[15] A. Buffa, C. Giannelli, P. Morgenstern, and D. Peterseim. Complexity of hierarchical refinement for a class of admissible mesh configurations. Computer Aided Geometric Design, 47:83-92, 2016.
bib | DOI | http | .pdf 1 ]
[16] D. L. Brown and M. Vasilyeva. A generalized multiscale finite element method for poroelasticity problems I: Linear problems. Journal of Computational and Applied Mathematics, 294(C):372-388, 2016. Also available as INS Preprint No. 1516.
bib | .pdf 1 ]
[17] D. Peterseim. Variational multiscale stabilization and the exponential decay of fine-scale correctors. In G. R. Barrenechea, F. Brezzi, A. Cangiani, and E. H. Georgoulis, editors, Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, volume 114 of Lecture Notes in Computational Science and Engineering. Springer, May 2016. Also available as INS Preprint No. 1509.
bib | arXiv | .pdf 1 ]
[18] P. Morgenstern. Globally structured three-dimensional analysis-suitable T-splines: Definition, linear independence and $m$-graded local refinement. SIAM J. Numer. Anal., 54(4):2163-2186, May 2016. Also available as INS Preprint No. 1508.
bib | DOI | arXiv | http | .pdf 1 ]
[19] M. Schedensack. A new generalization of the P1 non-conforming FEM to higher polynomial degrees. Comput. Methods Appl. Math., 17(1):161-185, 2017. also available as INS Preprint No. 1507 and arXiv e-print 1505.02044.
bib | arXiv | .pdf 1 ]
[20] D. Boffi, D. Gallistl, F. Gardini, and L. Gastaldi. Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form. Math. Comp., 2016. Accepted for publication.
bib | arXiv | .pdf 1 ]
[21] D. Gallistl and D. Peterseim. Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Comp. Meth. Appl. Mech. Eng., 295:1-17, 2015.
bib | DOI | arXiv | .pdf 1 ]
[22] D. L. Brown and V. Taralova. A multiscale finite element method for Neumann problems in porous microstructures. Disc. and Cont. Dyn. Sys., 2016. In press. Also available as INS Preprint No. 1503.
bib | .pdf 1 ]
[23] D. Peterseim. Eliminating the pollution effect in Helmholtz problems by local subscale correction. Math. Comp., 86:1005-1036, 2017.
bib | DOI | arXiv | .pdf 1 ]
[24] D. Brown and D. Peterseim. A multiscale method for porous microstructures. SIAM MMS, 14:1123-1152, 2016.
bib | DOI | arXiv | .pdf 1 ]
[25] P. Morgenstern and D. Peterseim. Analysis-suitable adaptive T-mesh refinement with linear complexity. Computer Aided Geometric Design, 34:50-66, 2015. Also available as INS Preprint No. 1409.
bib | DOI | http | .pdf 1 ]
[26] P. Henning, P. Morgenstern, and D. Peterseim. Multiscale partition of unity. In M. Griebel and M. A. Schweitzer, editors, Meshfree Methods for Partial Differential Equations VII, volume 100 of Lecture Notes in Computational Science and Engineering, pages 185-204. Springer International Publishing, 2015.
bib | DOI | http | .pdf 1 ]

SFB611 Preprints

Preprints of the SFB611 can be found at http://sfb611.iam.uni-bonn.de.