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Abstract: We provide a methodology for efficiently checking whether a tetrahedral
transfinite interpolation is regular. From given four triangular surfaces in form of
B-patches fulfilling some compatibility conditions, we generate a transfinite inter-
polation defined on the unit 3D simplex. An efficient subdivision scheme is provided
for a B-patch in order to obtain criteria which are verifiable in a discrete manner.
That yields an adaptive method where only some parts of the simplex need to be
subdivided. In order to reduce the computational cost, we make use of degree re-
ductions. That is achieved by utilizing products of scaled Jacobi polynomials. After
each subdivision process, one performs degree reductions provided that the induced
error is sufficiently small. This work is important for application in refineable func-
tions and for generation of multiscale or multiresolution bases functions from 3D
CAD models.
Key Words: Tetrahedron, subdivision, B-patch, transfinite interpolation, degree
reduction.

1 Introduction

Methods based upon refineable structures [12] are usually very efficient in prac-
tice [9] because they give rise to subdivision algorithms which can be used for the
construction of hierarchical bases [6]. Such a hierarchical setting produces in gen-
eral good accuracy with low computational cost [6]. For instance, in multigrid
for finite element method, one needs O(n) complexity which is optimal to solve a
problem having n degrees of freedom. In the case of multiscale methods, the rate
between cost and accuracy has been demonstrated to be optimal [5] as specified
by N -term approximation. While the theoretical advantages have been completely
proved [5, 6, 20], applications to real-world CAD data do not seem to have attained
a stage of maturity. Such problems are referred [2] to as curse of geometry because
of lack of geometric data. In this document, we want to contribute in the CAD mod-
eling for application in 3D hierarchical models. More precisely, we want to check
whether a tetrahedral transfinite interpolation which is defined on the unit tetra-
hedron is regular. A tetrahedral transfinite interpolation is useful for generation of
hierarchical mesh such as that in Fig. 1. Regularity is important when generating
a mesh by computing the image of a uniform mesh on a reference tetrahedron. We
use B-patches to represent the triangular non-planar faces of the tetrahedron. Gen-
erally, B-patch is the extension of Bézier or B-spline curve to triangular surfaces
as discussed in [4]. In terms of parametrizations, hexahedra are more attractive
than tetrahedra because hexahedral mappings have tensor product structure. But
a tetrahedral decomposition is simpler to generate than a hexahedral one [19, 14].
That is due to the fact that locally improving the quality of a tetrahedral decom-
position can be done without using hanging nodes by using bistellar flippings [7].
Similarly, for inserting a new node in a tetrahedral decomposition, local operations
can be applied. Such local operations do not completely exist for hexahedral decom-
positions. A local rectification in a hexahedral decomposition can affect hexahedra
which are very far from the hexahedron to be modified.

Related works about CAD preparation and triangular patch representations are
as follows. Brunnett and Randrianarivony have invested a lot to develop a method
which is appropriate for surfaces in integral equations. Their methods have already
been successfully implemented to CAD and molecular surfaces [17, 18]. Harbrecht
and Randrianarivony [8] have used those surface CAD models for applications in
Wavelet BEM. On the other hand, B-patches have been introduced by H. Seidel,
W. Dahmen, C. Micchelli around the early 1990’s. Later on, B-patches have been
further developed or generalized by many other scientists in CAGD and graphics.
Here, we want to extend the surface methods in [17, 18] to 3D solid models where
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(a) (b)

Figure 1: (a) CAD model (b) Tetrahedral decomposition

each cell is topologically a tetrahedron.
The structure of this paper is as follows. In the next section, we will formulate

the problem accurately and we will introduce various notions including tetrahedral
transfinite interpolation. In section 3, we will treat the representation of the triangu-
lar faces as B-patches. Afterwards, the correlation between transfinite interpolation
and blossomings will be treated in section 5. In section 4, we will apply recursive
subdivision in order to obtain an adaptive algorithm. Section 6 will contain degree
reductions which can be used to reduce the computational cost of the problem. We
do not give any numerical results from CAD for that we want to concentrate on
theoretical matter in this paper.

2 Problem Setting and Motivation

Let us first introduce the notion of transfinite interpolation where we consider the
following reference domains:

∆2
ref := {σ = (s, t) ∈ R

2 : s ≥ 0, t ≥ 0, s+ t ≤ 1}, (1)

∆3
ref := {u = (u, v, w) ∈ R

3 : u ≥ 0, v ≥ 0, w ≥ 0, u+ v + w ≤ 1}. (2)

Suppose that we have four triangular surfaces Fi : ∆2
ref −→ R

3 where i = 1, · · · , 4.
A transfinite interpolant is a function X : ∆3

ref −→ R
3 which verifies the following

boundary conditions:

X(u, v, 0) = F1(v, u)
X(u, 0, w) = F2(u,w)
X(0, v, w) = F4(w, v)
X(u, v, w) = F3(v, w) if u+ v + w = 1.

(3)

In order that these conditions can be fulfilled, it is necessary to assume the following
compatibility conditions at the four corners

F1(0, 0) =F2(0, 0) =F4(0, 0), F2(1, 0) =F1(0, 1) =F3(0, 0),

F4(0, 1) =F1(1, 0) =F3(1, 0), F2(0, 1) =F3(0, 1) =F4(1, 0),
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(a) (b)

Figure 2: (a)Tetrahedralization of the reference tetrahedron ∆3
ref (b)Image by a

tetrahedral transfinite interpolation of the left-hand mesh.

and the following six compatibility conditions at the interfaces

F1(0, µ) =F2(µ, 0), F1(1 − µ, µ) =F3(1 − µ, 0),

F1(µ, 0) =F4(0, µ), F2(1 − µ, µ) =F3(1 − µ, 0),

F2(0, µ) =F4(µ, 0), F3(1 − µ, µ) =F4(µ, 1 − µ).

For the local node and face numbering, we follow the CGNS convention [3] be-
cause our theory will eventually be used in practical computer implementations.
Therefore, it is advantageous to follow standard indexation though an arbitrary
indexation would work as well. Consider four blending functions pi : R

3 → R which
are entities verifying

(C1) p1(0, v, w) = 0 for all v, w ∈ R

(C2) p2(u, 0, w) = 0 for all u,w ∈ R

(C3) p3(u, v, 0) = 0 for all u, v ∈ R

(C4) p4(u, v, w) = 0 for all u, v, w ∈ R with u+ v + w = 1,

and whose sum is such that

4∑

i=1

pi(u) = 1 ∀u = (u, v, w) ∈ R
3. (4)

For our purpose, we will consider only blending functions pi which are polynomials.
Note that conditions (C1) until (C4) ensure that each blending function pi has zero
values on respective face of the unit tetrahedron ∆3

ref . In order to describe the
definitions in this document well, let us introduce the next notations. We will use
Ja, bK to denote the set of integers between a ∈ Z and b ∈ Z (a and b included). Like
in many documents of CAGD, multi-indices will be denoted by bold Greek letters
such as β ∈ N

d+1
0 where β = (β0, · · · , βd) in which we have |β| :=

∑d
p=0 βp. We

introduce the following set

Ωd
n := {β = (β0, ..., βd) ∈ N

d+1
0 : |β| = n}. (5)

The tetrahedral transfinite interpolation which is used in this document will be
given in the form
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X(u) =
M∑

i=0

pr(i)(u)Fs(i)[ψi(u)] ∈ R
3, (6)

where r and s are certain functions defined on J1,MK and taking value in J0, 4K
while ψi : R

3 → R
2 are some affine functions. The following expanded expression of

(6) will not be used here but it is important for verification and practical implemen-
tation. It is immediate to verify that the next expression fulfils the conditions in (3)
by using the properties of the blending functions and the compatibility conditions.

X(u) := p3(u)F4(u + w, v) + p2(u)F4(w, u + v) + p1(u)F1(v, u+ w)

+p2(u)F1(v + w, u) + p4(u)F1(v, u) + p4(u)F4(w, v) + p4(u)F2(u,w)

+p1(u)F1(u + v, w) − p4(u)F2(0, w) + p1(u)F3(v, w) + p1(u)F3(0, 0)

−p1(u)F3(0, 0) − p3(u)F4(1 − v, v) − p2(u)F4(w, 1 − w) − p4(u)F4(0, v)

−p2(u)F4(0, u+ v + w) + p3(u)F1(u, v + w) − p3(u)F2(0, u+ v + w)

−p1(u)F3(0, w) − p2(u)F1(1 − u, u)− p1(u)F1(v, 1 − v) − p4(u)F1(0, u)

+p3(u)F2(0, 1) + p2(u)F1(1, 0) + p4(u)F4(0, 0) + p3(u)F3(v, 1 − v − u)

+p2(u)F1(1 − w − u,w) − p1(u)F1(0, u+ v + w) − p3(u)F3(0, 1 − u).

In practical hierarchical mesh generation, it is important that the transfinite map-
ping X is regular

J (u, v, w) = det[X(u, v, w)] 6= 0 ∀ (u, v, w) ∈ ∆3
ref . (7)

Regularity is essential because finding a hierarchical splitting on the image mesh
X(∆3

ref) will be done in the following way. One first generates a hierarchical mesh M
on the reference tetrahedron ∆3

ref . Afterwards, one computes its image X(M) by X

as shown in Fig. 2. If the transfinite interpolation X is not regular, then the image
mesh X(M) will have some foldings which are not appropriate for the subsequent
numerical simulations. Note that although a triangular face is completely inside
the whole CAD model, it is possible that it is nonplanar. As a consequence, it
is important to consider this problem in its full generality and not only for cases
where some triangular faces are planar. It is possible that the four surfaces are
quite smooth while the internal cells present irregularity which causes conflict in
subsequent mesh refinement. The purpose of this paper is not to give a remedy
of irregularity. Our main objective here is exclusively to recognize if a tetrahedral
transfinite interpolation X determines a regular functions. Since it is not possible
to check the sign of the determinant in (7) for all points inside the tetrahedron, we
need discrete information which is easy to check. We will search for criteria related
to the control points (see Fig. 3) of the faces Fi to verify regularity.

3 Multivariate B-patch representation

Since the triangular faces Fi are represented in B-patch form, we will introduce
the definition and certain properties of B-patch in this section. We will see only
those topics which are immediately related to our needs and complete details can
be found in [21, 22, 4]. First, let us utilize the barycentric coordinates with respect
to W = (w0, · · · ,wd) where wi ∈ R

d by using

D(W ) := det

[
1 1 ... 1

w0 w1 ... wd

]

. (8)
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Figure 3: (a)Tetrahedral transfinite interpolation (b)B-patch for n = 3

Additionally, we define for any u ∈ R
d

Di(W |u) := det

[
1 ... 1 1 1 ... 1

w0 ... wi−1 u wi+1 ... wd

]

. (9)

The barycentric coordinates of u with respect to W are defined by

λi(u) := Di(W |u)/D(W ). (10)

For a set A := {tp,i ∈ R
d : p ∈ J0, dK, i ∈ J0, n − 1K} and a multi-index

δ = (δ0, · · · , δd), we define Aδ := {t0,δ0
, · · · , td,δd

}. The set A is called a knot ar-
rangement if Aδ is affinely independent for all |δ| ≤ n. Let λδ,p(u) be the barycen-

tric coordinates of u ∈ R
d with respect to Aδ such as u =

∑d
p=0 λδ,p(u)tp,δp

. In

order to define the basis functions [21, 4], we initialize B0
0
(u) := 1 where 0 ∈ Ωd

0.
For k ∈ J1, nK, we define recursively

Bk
δ(u) :=

d∑

p=0

λδ,p(u)Bk−1
δ−ep

(u) for δ ∈ Ωd
k, (11)

where ep ∈ Ωd
1 is the multi-index having 1 at the p-th entry and 0 elsewhere. A

B-patch is defined to be a linear combination of those basis functions BA
β := Bn

β:

Y(u) =
∑

β∈Ωd
n

bβBA
β (u). (12)

The set of the control points bβ generates the control net of the B-patch. A
graphical illustration of a control net for n = 4 can be seen in Fig. 4(b). In our case
of tetrahedral transfinite interpolation, we suppose that the four triangular faces
Fp are B-patches:

Fp(s, t) =
∑

β∈Ω2
n

b
p
βBA

β (s, t) ∀ p = 1, ..., 4. (13)

For the knot arrangement, we will denote the first entries by tp := tp,0. Further,
we make the assumption that the distance of the clouds (tp,i)

n−1
i=1 about each apex

tp is of order quadratic to the length of the edges (see Fig. 4(a)):

‖tp − tp,i‖ = O
(

max
j 6=k

‖tj − tk‖2

)

∀ p ∈ J1, dK, ∀ i ∈ J1, n− 1K. (14)
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Figure 4: (a)Knot arrangement (b)Control net for n = 4

It is well known [21, 22] that every multivariate polynomial can be expressed in
term of one B-patch. Additionally, if each cloud of points is reduced to one point
such as tp := tp,i for all i ∈ J0, n− 1K then we retrieve the usual triangular Bézier
surface with the basis functions

n!

β0!β1! · · ·βd!
(1 − u0 − ...− ud)

β0uβ1

1 · · ·uβd

d . (15)

On the other hand, a B-patch can be seen as a piece of triangular B-spline which
have been developed by Dahmen, Micchelli and Seidel [4].
The relationship of the control points and the polynomials can be expressed with
the help of the blossoming which we recall briefly now. A function b is a polar form
or a blossom function [16] if it is multiaffine:

b(u1, · · · , λau
a
i + λbu

b
i , · · · ,un) = λab(u1, · · · ,ua

i , · · · ,un)+
λbb(u1, · · · ,ub

i , · · · ,un) ∀λa + λb = 1.
(16)

and symmetric:

b(u1, · · · ,ui, · · · ,uj , · · · ,un) = b(u1, · · · ,uj , · · · ,ui, · · · ,un). (17)

There is a close connection between blossoms and the space of d-variate polynomials
of degree n:

Πn(Rd) :=






f : f(u) =

∑

|γ|≤n

aγuγ , aγ ∈ R






. (18)

For each polynomial f ∈ Πn(Rd), there is a unique blossom function P(f) such that
we have the next diagonal property:

P(f)(u, · · · ,u
︸ ︷︷ ︸

n

) = f(u) ∀u ∈ R
d. (19)

The blossom of the function Y can be evaluated at (u1, · · · ,un) with the help of a
pyramid algorithm [21]:
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Figure 5: (a)Seidel’s subdivision (b),(c)Subdivision with similar shape

Algorithm: Pyramid algorithm for multivariate blossom
1: Initialize b0

δ := bδ for all δ ∈ Ωd
n

2: for (l = 1, · · · , n)

3: bl
δ :=

∑d
k=0 λδ,k(ul)b

l−1
δ+ek

∀ δ ∈ Ωd
n−l

4: enddo

5: Define P(Y)(u1, · · · ,un) := dn
0 where 0 = (0, · · · , 0) ∈ Ωd

0

The blossom function of the B-patch in (12) and the control points are related with
the following relation

bγ = P(Y)(t0,0, · · · , t0,γ0−1
︸ ︷︷ ︸

γ0

, t1,0, · · · , t1,γ1−1
︸ ︷︷ ︸

γ1

, · · · , td,0, · · · , td,γd−1
︸ ︷︷ ︸

γd

). (20)

4 Subdivision of B-patches

In this section, we state our results about subdivision and its application to our
tetrahedral transfinite interpolation. To that end, let us formulate the process of
subdivision clearly. Seidel has proposed a subdivision scheme where one inserts a
new point inside one triangle which is then split into three sub-triangles as seen in
Fig. 5(a). Below, we propose a more general subdivision for the multidimensional
case where a simplex is split into several simplices which have the same shape up
to some rotations. The following subdivision technique is correct for any dimension
d but we will need it mainly for d = 3.

Before formulating the recursive subdivision, let us formulate the expression of
a B-patch inside a smaller knot arrangement where tp = tp,0. Let Y be a B-
patch with respect to A = {tp,i} as in (12). Consider another knot arrangement
Ā = {t̄p,i} with t̄p := t̄p,i such that the simplex conv{t̄p : p ∈ J0, dK} is inside the
simplex conv{tp : p ∈ J0, dK}. We want to express Y from (12) with respect to the
new knot arrangement Ā such that

Y(u) =
∑

β∈Ωd
n

b̄βBĀ
β (u). (21)

In order to find the control points b̄β with respect to the new knot arrangement Ā,
we apply the pyramid algorithm from Section 3 to (u1, ...,un)= (̄t0,0, · · · , t̄0,β0−1, t̄1,0,
· · · , t̄1,β1−1, · · · , t̄d,0, · · · , t̄d,βd−1) by using the blossom of the originalB-patch (12).
The new control points are then obtained from the connection formula (20), that is
to say we have

b̄β = P(Y)(̄t0,0, · · · , t̄0,β0−1, t̄1,0, · · · , t̄1,β1−1, · · · , t̄d,0, · · · , t̄d,βd−1). (22)
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Figure 6: (a)Uniform subdivision with ω2
5 triangles (b)Adaptive subdivision (c)Sign

distribution on the subdivided simplex

In order to introduce the notion of recursive subdivisions, suppose that a B-patch
has a knot arrangement where the apices tp are the corners of a simplex ∆ ⊂ R

d.
In fact, the simplex ∆ is subdivided into several subsimplices as follows. First,
a new node is introduced at the middle of each edge of ∆. Then, one generates
subsimplices of the same size by using only the nodes of ∆ and the newly created
ones. For example, in case of triangles or tetrahedra where d = 2 and d = 3, we
have the subdivisions in Fig. 5(b) and Fig. 5(c) respectively. The same subdivision
process can be applied to each one of the resulting subsimplices. By doing that
repeatedly, let us denote by ωd

N the number of simplices after N subdivisions as
illustrated in Fig. 6(a). That is, we have simplices ∆N,k for k = 1, 2, ..., ωd

N on
which we have the B-patches

YN,k(u) =
∑

β∈Ωd
n

b
N,k
β BAN,k

β (u). (23)

Thus, on the N -th subdivision, we obtain ωd
N knot arrangements AN,k for k =

J1, wd
N K having knots tN,k

q . We suppose that the relation (14) about the cloud still

persists in each subdivision step. That is, we have at each apex tN,k
r :

‖tN,k
r − t

N,k
r,i ‖ = O

(

max
p6=q

‖tN,k
p − tN,k

q ‖2

)

∀ i ∈ J1, n− 1K. (24)

Note that the length ‖tN,k
q − tN,k

p ‖ of an edge on the current subdivision is the half

of the parent edge. For the k-th subsimplex (k ∈ J1, ωd
N K) of the N -th subdivision,

we will denote the control point by bN,k
β . Additionally, the maximal length of the

initial edges will be denoted by

h := max
p6=q

‖t0
p − t0

q‖. (25)

In our case of tetrahedral transfinite interpolation, we suppose that the apices ti

of the first knot arrangement are composed of the corners of the unit reference
tetrahedron ∆3

ref , that is ∆ := ∆3
ref .

A tetrahedral mapping is regular if the determinant is of constant sign. Through-
out this paper, we suppose it is positive. Additionally, although the determinant
is positive but very small, we consider that as irregularity. As a consequence, the
regularity definition in (7) can be replaced by

J (u) = det[X(u, v, w)] ≥ δ ∀u = (u, v, w) ∈ ∆3
ref , (26)

for some prescribed constant δ > 0.
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Theorem 4.1 Suppose that we have regularity and that J (u) ≥ δ > 0. Then,
for sufficiently many subdivisions, for all k ∈ J1, ωd

N K and β ∈ Ωd
N the B-patch

coefficients bN,k
β on each subsimplex verify:

bN,k
β = P(J )(T ) + O

(

max
p6=q

‖tN,k
p − tN,k

q ‖2

)

. (27)

Thus, the expected number of subdivisions to ensure the positivity of those coeffi-
cients bN,k

β is

N ∼
⌈

log2

(√
δ

h

)⌉

(28)

where ⌈x⌉ denotes the smallest integer which is larger than x.

PROOF. Consider the k-th subsimplex on the N -th subdivision. For each multi-
index γ = (γ0,· · · ,γd) ∈ Ωd

n, we define θγ :=
∑d

p=0(γp/n)tN,k
p . Consider the follow-

ing ordered knot sequence

T := (tN,k
0,0 , · · · , tN,k

0,γ0−1
︸ ︷︷ ︸

γ0

, · · · , tN,k
d,0 , · · · , t

N,k
d,γd−1

︸ ︷︷ ︸

γd

) (29)

and that of θ as

T̃ = (θβ, · · · , θβ
︸ ︷︷ ︸

n

) T̄ := (tN,k
0,0 , · · · , tN,k

0,0
︸ ︷︷ ︸

γ0

, · · · , tN,k
d,0 , · · · , t

N,k
d,0

︸ ︷︷ ︸

γd

). (30)

We apply a multi-variate Taylor expansion of second order to the blossom P(J ).

P(J )(T̃ ) = P(J )(T )+
∑

|γ|=1

∂γP(J )(T )(T − T̃ )γ +O
(

max
p6=q

‖tN,k
p − tN,k

q ‖2

)

. (31)

Since the blossom is symmetric, the first partial derivatives are the same such that
for all |γ| = 1 we have ∂γP(J )(T ) = K. Moreover, we have for |γ| = 1:

(T − T̃ )γ = trp,q − θr
γ . (32)

By using relation (24), we obtain for γ having unity length for entry corresponding
to p, r:

(T − T̃ )γ = (T − T̄ )γ + O
(

max
p6=q

‖tN,k
p − tN,k

q ‖2

)

. (33)

As a consequence, we have

P(J )(T̃ ) = P(J )(T ) +K

d∑

q=1

γq(t
N,k
q − θN,k

γ ) + O
(

max
p6=q

‖tN,k
p − tN,k

q ‖2

)

. (34)

Additionally, we have

d∑

q=1

γq(t
N,k
q − θN,k

γ ) =

d∑

q=1

γq



(1 − γq

n
)tN,k

q −
∑

p6=q

γp

n
tN,k
p





=





d∑

q=1

γq

∑

p6=q

γp

n
tN,k
q



−





d∑

p=1

∑

p6=q

γp

n
γpt

N,k
q



 = 0.
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Thus, the sum with |γ| = 1 of (31) vanishes and we obtain

P(J )(T̃ ) = P(J )(T ) + O
(

max
p6=q

‖tN,k
p − tN,k

q ‖2

)

(35)

= P(J )(T ) + O
(

1

22N
max
p6=q

‖t0,0
p − t0,0

q ‖2

)

. (36)

We use the relation between the control points and the blossom in order to have

bN,k
β ≥ δ + O

(
1

2N
h

)2

. (37)

The coefficients are therefore positive for sufficiently many subdivisions. More, the
expected number of subdivision N verifies

2−N ∼
√
δ

h
. (38)

�

Theorem 4.2 Let X be a tetrahedral transfinite interpolation that is not regular.
Then, in the situation of Theorem 4.1 and for sufficiently large N , there must exist
subsimplices ∆N,k1 and ∆N,k2 such that

{

bN,k1

β > 0 ∀β ∈ Ωd
n

bN,k2

β < 0 ∀β ∈ Ωd
n.

(39)

PROOF. Since we do not have regularity, J (u, v, w) is not of constant sign. Con-
sider the following two disjoint sets (see Fig. 6(c)):

A+ := {u ∈ ∆3
ref : J (u) > 0}, (40)

A− := {u ∈ ∆3
ref : J (u) < 0}. (41)

For sufficiently many subdivisions, there exist k1 and k2 such that the two small
simplices ∆N,k1 and ∆N,k2 belong respectively to A+ andA−. That is, Y N,k1(u) > 0

and Y N,k2(u) < 0. In order to obtain the claim about the control points bN,k1

β and

bN,k2

β , we should use the blossom functions as in the proof of Theorem 4.1. In other
words, by using the same argument as in (35), we obtain (39) for sufficiently large
N .

�

The former theory proposes that we subdivide everywhere. In practice, that is
not necessary because if X is regular on a larger simplex, then it is also regular for all
subsimplices. That is, we need only to subdivide the simplices which are critical as
illustrated in Fig. 5. The conditions in (39) will be used as an abortion criterion in
the regularity algorithm which is summarized below. Note that we perform adaptive
subdivision, i.e. only those functions are subdivided that have coefficients with
different signs. In the following pseudo code, we start with K = ∆3

ref . The routine
SignTest(K) is a function that returns +1 (resp. −1) if all B-patch coefficients of
the Jacobian defined on the simplex K are positive (resp. negative) and say 2 else.
If Check() returns ’+1’ or ’-1’, then X is regular. If Check() returns ’0’, X is not
regular.
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Algorithm: Check(Simplex K)
1: int sign=SignTest(K)
2: if (sign==-1) or (sign==+1) then

3: return sign;
4: else

5: subdivide K into K1,· · · , Kωn

6: for(i=1,· · · ,ωn) int sign[i]=Check(Ki); enddo

7: if (sign[1]==sign[2]==· · ·==sign[ωn]==-1) then

8: return -1;
9: endif

10: if (sign[1]==sign[2]==· · ·==sign[ωn]==+1) then

11: return +1;
12: endif

13: return 0;
14: endif

5 Transfinite interpolation and blossoms

We have introduced the tetrahedral transfinite interpolation as a combination of
the triangular faces which are B-patches in relation (6). But we did not show yet
how to describe the resulting map X as a single B-patch which is used in the above
subdivision algorithm. The purpose of this section is to show some way of achieving
that by using blossoming operations. Before showing the exact computations, let us
introduce some notion about products of blossoms. For I ⊂ J1, nK such that |I| = m,
let pI be the projection from (Rd)n to (Rd)m such that for U = (u1, ...,un) ∈ (Rd)n,
ui appears in pI(U) if i belongs to I. The following theorem has been proved in
[23] by using homogeneous polynomials. Below, we provide an alternative direct
proof which is simpler in the opinion of the author.

Lemma 5.1 Let a0, ...,ad be affinely independent in R
d. For any x ∈ R

d, define
α1(x),..., αd(x) the components of −−→a0x in {−−→a0a1, ...,

−−→
a0ad}.

−−→a0a1 =
d∑

i=1

αi(x)−−→a0ai (42)

Define α0(x) := 1 −∑d
i=1 αi(x). Then, every blossom function b verifies

b(x1, ...,xN−1,xN ) =

d∑

i=0

αi(xN )b(x1, ...,xN−1,ai). (43)

This lemma is useful for reducing the number of variables in the following proof
using induction.

Proposition 5.2 Let f1 ∈ Πn1
(Rd) and f2 ∈ Πn2

(Rd) with ni ≥ 1. Then, the
product f1f2 ∈ Πn1+n2

(Rd) and its blossom is given by

P(f1f2)(U) =
n1!n2!

(n1 + n2)!

∑

(I1,I2)∈S(n1,n2)

P(f1)(pI1(U))P(f2)(pI2 (U)) (44)

where U := (u1, ...,un1+n2
) with ui ∈ R

d for all i ∈ J1, n1 + n2K and

S(n1, n2) := {(I1, I2) ∈ J1, n1 + n2K
2 : I1 ∪ I2 = J1, n1 + n2K, |Ii| = ni}. (45)

11



PROOF. Our proof is done by using induction on N := n1 + n2 and by noting
that S(n1, n2) can be partitioned into S1(n1, n2) ∪ S2(n1, n2) where

S1(n1, n2) := {(I1, I2) : I1 = I∗1 ∪ {N} where (I∗1 , I2) ∈ S(n1 − 1, n2)} ,
S2(n1, n2) := {(I1, I2) : I2 = I∗2 ∪ {N} where (I1, I

∗
2 ) ∈ S(n1, n2 − 1)} .

Consider the simplest case N = 2 i.e. n1 = n2 = 1. Since they are linear polynomi-
als, we have P(fi)(u) = fi(u) for i = 1 or i = 2. Note that the following function
is multiaffine and symmetric

F (u1,u2) :=
1

2
[f1(u1)f2(u2) + f1(u2)f2(u1)], (46)

Additionally, we have F (u,u) = f1(u)f2(u). Thus, F is the blossom of f1f2. Since,
F verifies (44), the claim holds for N = 2. Suppose that it is correct for N − 1 and
let us prove it for N . Introduce

R :=
∑

(I1,I2)∈S(n1,n2)

L(I1, I2), where (47)

L(I1, I2) := P(f1)(pI1(U))P(f2)(pI2 (U)). (48)

Let us show that

R =
(n1 + n2)!

n1!n2!
P(f1f2). (49)

We have

R = R1 +R2 where Ri :=
∑

(I1,I2)∈Si(n1,n2)

L(I1, I2). (50)

Because of the former lemma, we have for I1 ∩ I2 = ∅

R1 =
∑

(I1,I2)∈S1

P(f1)(pI1(u1, ...,uN ))P(f2)(pI2 (u1, ...,uN ))

=
∑

(I∗

1
,I2)∈S(n1−1,n2)

d∑

i=0

αi(uN )P(f1)(pI∗

1
(u1, ...,uN−1),ai)P(f2)(pI2 (u1, ...,uN−1)).

The last factor is obtained beause pI2(u1, ...,uN ) = pI2(u1, ...,uN−1) because I2
does contain uN . Since the blossom and the directional derivative is related by

P(Daf1)(v1, ...,vn1−1) = P(f1)(v1, ...,vn1−1,a), (51)

we obtain from the hypothesis of induction

R1 =
∑

(I∗

1
,I2)∈S(n1−1,n2)

d∑

i=0

αi(uN )P(Dai
f1)(pI∗

1
(u1, ...,uN−1))P(f2)(pI2(u1, ...,uN−1))

=
(n1 + n2 − 1)!

(n1 − 1)!n2!

d∑

i=0

αi(uN )P((Dai
f1)f2).

We can do the same computation for R2. Define δi := n1αi/(n1 + n2) and δd+i :=
n2αi/(n1 + n2) for i = 0, ..., d. Since blossoms are additive, we obtain

12



R =
(n1 + n2)!

n1!n2!

d∑

i=0

δi(uN )P [(Dai
f1)f2 + (Dai

f2)f1]

=
(n1 + n2)!

n1!n2!

d∑

i=0

δi(uN )P [Dai
(f1f2)]

=

d∑

i=0

(n1 + n2)!

n1!n2!
δi(uN )P(f1f2)(u1, ...,uN−1,ai)

=
(n1 + n2)!

n1!n2!
P(f1f2)(u1, ...,uN ).

�

Since we have assumed in Section 2 that the blending functions pi are polynomials,
each term in the function X from relation (6) can be expressed in B-patch by using
the former Theorem and the pyramid algorithm. Additionally, since the determinant
function is multiaffine, the function of interest J from relation (26) can be written
in B-patch form by using the same idea.

6 Improving the efficiency

We focus in this section on improving the efficiency of the former algorithm. When
the degree n is large and we have many control points, the former method might
become computationally expensive. As a consequence, we want to show here a
method of reducing the degree n while still achieving regularity check. In our next
description, we will need the Jacobi polynomials [24] that are given by the Rodrigues
relation:

P (α,β)
n (t) =

1

2nn!
(t− 1)−α(t+ 1)−β

(
d

dt

)n

[(t− 1)n+α(t+ 1)n+β ] (52)

which can be explicitly given by

P (α,β)
n (t) =

Γ(n+ α+ 1)

Γ(α+ 1)n!
F

[
−n, n+ α+ β + 1

α+ 1
;
1 − t

2

]

(53)

where F (t) := 2F1(t) is the hypergeometric [1] function. The Jacobi polynomials

P
(α,β)
n can be evaluated recursively by the three-term relation

SnP
(α,β)
n+1 (t) = Tn(t)P (α,β)

n (t) + UnP
(α,β)
n−1 (t) (54)

where Sn := 2(n+ 1)(n+α+ β+ 1)(2n+α+ β) and Un(t) := 2(n+ 1)(n+ β)(2n+
α + β + 2) while Tn(t) := (2n + α + β + 1)(α2 − β2) + (2n + α + β)3t in which
the Pochhammer symbol [1] is used. Since the Jacobi polynomials are defined on
[−1,+1] but we need results in [0, 1], we introduce the modified Jacobi polynomials

J (α,β)
n (t) := P (α,β)

n (2t− 1) ∀ t ∈ [0, 1]. (55)

In our next discussion, we will need only Jacobi polynomials for the ultraspherical

case α = β where we denote P
(α)
n := P

(α,α)
n and J

(α)
n := J

(α,α)
n . Additionally, we

use only the case where α > (1 +
√

2)/4 and α ∈ N. The following result is valid
for any dimension d but we will only use it later for d = 3. We need a norm for the
polynomials on the unit simplex ∆d := {x = (x1, · · · , xd) : xi ≥ 0, 1 − |x| ≥ 0}
where |x| denotes the l1 norm of x. Consider a function f which is a multivariate
polynomial of degree n:
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f(x1, · · · , xd) =
∑

|γ|≤n

bγx
γ1

1 · · ·xγd

d x = (x1, · · · , xd) ∈ ∆d. (56)

Let us introduce for the polynomial f the quantity

‖f‖∆d := max
x∈∆d

[
d∏

i=1

(1 − xi)
kxk

i

]

|f(x)|. (57)

By using continuity argument, we can show that ‖ · ‖∆d defines a norm on the
polynomials of ∆d. In order to reduce the computational cost, we would like to find
f̃ which has the same shape as f but which has a lower degree m < n. Without
loss of generality we suppose m = n− 1. The definition of f̃ will be done by using
the Jacobi polynomial and the error ‖f − f̃‖∆d will be analyzed. Consider the case
k ∈ N such that k ≥

⌈
α
2 + 1

4

⌉
.

Theorem 6.1 Consider a multivariate polynomial f ∈ Πn(Rd) with bounded n-th
derivatives such that for all |γ| = n, we have:

1

γ!
|∂γf(x)| =

1

γ1! · · ·γd!

∣
∣
∣
∣

∂γ1

∂xγ1

1

· · · ∂
γd

∂xγd

d

f(x1, · · · , xd)

∣
∣
∣
∣
≤ C ∀x ∈ ∆d. (58)

There is a polynomial f̃ ∈ Πn−1(R
d) of the following form

f̃(x) :=
∑

|γ|≤n−1

cγ

d∏

j=1

x
γj

j −
∑

|γ|=n

cγ

d∑

q=1

Rγq
(xq)

q−1
∏

j=1

x
γj

j

d∏

j=q+1

(x
γj

j −Rγj
(xj)) (59)

such that the error is given by

‖f − f̃‖∆d ≤ K
1

22n

∑

|γ|=n

d∏

i=1

2−2k+α+0.5 (1 + α/max{1, γi})
(2γi+2α

γi
)

, (60)

where the constant K depends only on α.

PROOF. Since the leading coefficient of the Jacobi polynomial P
(α)
q is lq :=

∏q
j=1(q + j + 2α)/2j, the polynomial J̃

(α)
q := J

(α)
q /(2qlq) which is a scaled form

of (55) is monic. As a consequence, by the Taylor expansion of f at 0 = (0, · · · , 0),
the following multivariate polynomial is of total degree (n− 1):

f̃(x) =
∑

|γ|<n

1

γ!
∂γf(0)xγ +

∑

|γ|=n

1

γ!
∂γf(0)

d∏

i=1

(xγi

i − J̃ (α)
γi

(xi)). (61)

Because of the monicity of the scaled Jacobi J̃
(α)
q , we can introduce Rq(t) := tq −

J̃
(α)
q (t). Let us denote cγ := 1

γ!∂γf(0, ..., 0). The former equation yields

f̃(x) =
∑

|γ|≤n

cγ

d∏

j=1

x
γj

j −
∑

|γ|=n

cγ

d∏

j=1

(x
γj

j −Rγk
(xj)). (62)

After developing the last summation, we obtain (59). It is known [13, 11] that for

fixed α, we have tα/2+1/4(1 − t)α/2+1/4P
(α)
m (t) ≤ C(1 + α/max{1,m}). Therefore,

we have for t ∈ [0, 1]

(1 − t)ktk|P (α)
γi (t)| ≤ maxt∈[0,1] (1 − t)k−α/2−1/4tk−α/2−1/4

maxt∈[0,1](1 − t)α/2+1/4tα/2+1/4|P (α)
γi (t)|

≤ K2−2k+α+1/2 (1 + α/max{1, γi}) .
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Since the n-th derivatives are bounded, we deduce from the former inequality

‖f − f̃‖∆d ≤ K
∑

|γ|=n

max
x∈∆d

d∏

i=1

(1 − xi)
kxk

i |J̃ (α)
γi

(xi)|

≤ K
∑

|γ|=n

d∏

i=1

max
xi∈[0,1]

(1 − xi)
kxk

i |J
(α)
γi (xi)|

22γiΠγi

j=1(γi + j + 2α)/4j

≤ K
∑

|γ|=n

1

22(
∑

d
i=1

γi)

d∏

i=1

2−2k+α+1/2(1 + α/max{1, γi})
Πγi

j=1(γi + j + 2α)/4j

≤ K
1

22n

∑

|γ|=n

d∏

i=1

2−2k+α+1/2(1 + α/max{1, γi})
Πγi

j=1(γi + j + 2α)/4j
.

�

Note that in the previous analysis, the multivariate function f from relation (56)
is given in monomial basis but we need results in B-patch structure as discussed
in the former sections. That holds also for the degree reduced polynomial f̃ . In
order to obtain B-patch representation, one can represent the Jacobi polynomials
in terms of Bézier as discussed in [15]:

P (α)
n (t) =

n∑

i=0

(−1)n−i
(n+α

i )(n+α
n−i )

(n
i )

Bn
i (t). (63)

Then, one needs only to transform that in the appropriate knot arrangement as
we described in (21). Afterwards, the function f̃ can be represented in B-patch of
degree (n−1) by using the pyramid algorithm of Section 3. The B-patch coefficient
of f̃ can be deduced from the blossom and the pyramid algorithm by applying
formula (20).

Degree n εn(1, 2) εn(2, 2) εn(3, 2)
4 8.418543e-002 1.300437e-001 2.424409e-001
7 2.852678e-003 4.010734e-003 6.843747e-003
10 7.717651e-005 1.021698e-004 1.632607e-004
13 1.849422e-006 2.347735e-006 3.565172e-006
19 7.394503e-010 8.735727e-010 1.200853e-009
22 1.144845e-011 1.336140e-011 1.802953e-011
31 3.673017e-017 4.402754e-017 6.183465e-017
40 1.170561e-022 1.481952e-022 2.241786e-022

Table 1: Errors εn(α, k) for degree reductions

Remark 6.2 Note that a very similar result can be obtained for L∞ norm instead
of the norm ‖ ·‖∆d but the proof is more involved. The estimation on the right hand
side of equation (60) can be precomputed:

εn :=
1

22n

∑

|γ|=n

d∏

i=1

2−2k+α+0.5 (1 + α/max{1, γi})
(2γi+2α

γi
)

. (64)

Some computer outputs about the values of εn for various values of n can be found
in Table 1. The assumption in (58) is not restrictive in practice because the partial
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(a) (b)

Figure 7: Splitting of a mechanical part

derivatives are divided by γ! which is supposed to be very large for |γ| = n. Although
we have only presented degree reduction from n to n−1, the results can be generalized
to more general cases. If we use several degree reductions from n to m < n, then
we replace εn in relation (60) to

µ(n,m) := εn + εn−1 + ...+ εm. (65)

Now that we have gained enough insight for degree reduction, we want to describe
its usefulness for our former technique. In order to improve the efficiency of the
method which we described in Section 4, we use multiple degree reductions in the
following way. After each subdivision step, we check if by reducing the degree from
n to some m < n, the error introduced for each resulting patch verifies

µ(n,m) < λδ (66)

where δ is some user specified parameter in ]0, 1[. If so, then we apply a process of
degree reduction. The former relations in (35) become therefore

P(f)(T̃ ) = P(f)(T )− µ(n,m) + O
(

1

22n
max
p6=q

‖t0,0
p − t0,0

q ‖2

)

(67)

Hence, the former property about subdivision still remains valid by using the fol-
lowing inequality in place of (37)

bn,k
β ≥ (1 − λ)δ + O

(
1

2n
h

)2

. (68)

7 Conclusion and Discussion

We have mainly presented a theoretical method for efficiently checking whether a
tetrahedral transfinite interpolation is regular. The use of subdivision is helpful
to devise an adaptive method. In order to reduce the computational cost of the
method, we use degree reduction. That is done by utilizing the scaled Jacobi poly-
nomials. There are mainly two types of geometric data in CAGD. There are those
which are composed of algebraic primitives such as planes, cylinders, spheres. On
the other hand, there are free-form surfaces which do not have any structural fea-
tures. Free-form surfaces are often seen in computer medicine including vertebral
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cuts, bones, cardiac parts and skulls. Rhino3D is CAD system which is very well
suited for such medical models. Those organic models are extremely free-form and
it is impossible to describe them in term of simple algebraic parts. Other forms of
geometric data are molecular data which are mainly composed of spherical parts.
Yet other types of geometric data are CAD data which are mixture of algebraic
parts and free-form ones. For instance, we can usually see that in car coachworks
where most part are free form. The method that is presented here is good for most
types of geometries because we do not put too much restrictions on the type of the
boundary faces. It is only partially included in our hierarchical mesh generator il-
lustrated in Fig. 7. Therefore, we plan to completely include our theoretical results
in our implementations in the near future.
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