

Algorithmische Mathematik II

Sommersemester 2010 Prof. Dr. Mario Bebendorf Jos Gesenhues

Übungsblatt 2. Abgabe am Mittwoch, 05.05.2010 (vor der Vorlesung).

Aufgabe 1. (Hypergeometrische Verteilung)

a) Beweise die Normiertheit der Hypergeometrischen Verteilung, das heißt zeige für $n,r,m\in\mathbb{N}$ mit $n\leq r\leq m$, dass

$$\sum_{k=0}^{n} \frac{\binom{r}{k} \binom{m-r}{n-k}}{\binom{m}{n}} = 1$$

gilt.

b) Sei X hypergeometrisch verteilt mit den Parametern m, r und n. Zeige, dass $E(X) = n \frac{r}{m}$ gilt.

Hinweis: Die (natürlich zunächst zu beweisende) Identität $\binom{m}{n} = \frac{m}{n} \binom{m-1}{n-1}$ und a) helfen weiter.

(10 Punkte)

Aufgabe 2. (Erwartungswert)

Zeige, dass für den Erwartungswert E(X) einer Zufallsvariable $X: \Omega \to \mathbb{N}_0$

$$E(X) = \sum_{k=0}^{\infty} P(X > k)$$

gilt.

(10 Punkte)

Aufgabe 3. (Würfelparadoxon)

Zwei Würfel haben statt der üblichen folgende Beschriftungen:

$$W_1:633333$$
 $W_2:555222$.

A würfelt mit W_1 , B mit W_2 . Wer die höhere Zahl wirft, gewinnt.

- a) Zeige, dass das Spiel zu As Gunsten unfair ist.
- b) B schlägt folgende Variante vor: Es wird ein dritter Würfel ins Spiel gebracht, dessen Beschriftung B wählt. A darf sich einen der drei Würfel aussuchen. B wählt einen der beiden verbliebenen Würfel.

Kann B die Beschriftung des zusätzlichen Würfels so wählen, dass das Spiel zu seinen Gunsten unfair ist?

(10 Punkte)

Programmieraufgabe 1. (RANDU)

Implementiere den in der Vorlesung definierten Pseudozufallszahlengenerator RANDU. Erzeuge $10\,000$ Zahlen und fasse jeweils drei aufeinanderfolgende Zahlen als Vektor auf. Wende dann die nichtnegative Funktion

$$f \colon \mathbb{R}^3 \to \mathbb{R}$$
$$f(x, y, z) = 1 - \cos\left(2^{-30}\pi(9x - 6y + z)\right)$$

auf diese Vektoren an und summiere die Funktionswerte. Was wäre bei echten Zufallszahlen zu erwarten und was beobachtest du hier?

Hinweis: Die Kriterien für Programmieraufgaben entsprechen denen im vergangenen Semester und lauten wie folgt:

- Programmieraufgaben und sonstige Aufgaben werden getrennt voneinander gewertet.
- Programmieraufgaben gibt es auf jedem zweiten Übungsblatt.
- Übers ganze Semester müssen 50% der Punkte erreicht werden.
- Die Abgabe erfolgt im CIP-Pool (http://cip.iam.uni-bonn.de), für Abgabetermine muss sich jede Gruppe in der Woche vor der Abgabe in Listen eintragen, die im CIP-Pool aushängen.
- Alle Gruppenmitglieder müssen sich an der Abgabe beteiligen.

Die CIP-Pool-Tutoren stehen für Fragen zu den Programmieraufgaben zur Verfügung. (10 Punkte)

Abgabe innerhalb der Woche 03.05.-07.05.2010 im CIP-Pool