

Algorithmische Mathematik II

Sommersemester 2010 Prof. Dr. Mario Bebendorf Jos Gesenhues

Übungsblatt 9. Abgabe am Mittwoch, 30.06.2010 (vor der Vorlesung).

Aufgabe 1. (Unvollständiges Interpolationspolynom)

Gegeben seien $n \in \mathbb{N}$ und $(x_k, y_k) \in \mathbb{R} \times \mathbb{C}$ mit $x_k := 2\pi k/n$, $0 \le k < n$. Das eindeutig bestimmte trigonometrische Interpolationspolynom sei gegeben durch

$$p(x) = \sum_{\ell=0}^{n-1} c_{\ell} e^{i\ell x}.$$

Für $0 \le s < n$ sei

$$p_s(x) = \sum_{\ell=0}^{s} c_{\ell} e^{i\ell x}.$$

Sei durch $\langle u, v \rangle := \sum_{k=0}^{n-1} u_k \overline{v}_k$ für $u = (u_0, \dots, u_{n-1}), v = (v_0, \dots, v_{n-1}) \in \mathbb{C}^n$ ein Skalarprodukt gegeben. Zeige: Unter allen trigonometrischen Polynomen $q_s \in T_s^C$, $0 \le s < n$, minimiert p_s

$$||y - \tilde{q}_s||_2^2 := \langle y - \tilde{q}_s, y - \tilde{q}_s \rangle$$

mit
$$y := (y_0, \dots, y_{n-1})^T$$
 und $\tilde{q}_s := (q_s(x_0), \dots, q_s(x_{n-1}))^T$.

(10 Punkte)

Aufgabe 2. (Parsevalsche Gleichung)

Zeige, dass für die Fouriertransformation F_n wie in der Vorlesung, $y = (y_0, \dots, y_{n-1}) \in \mathbb{C}^n$ und $\|\cdot\|_2$ wie in Aufgabe 1 gilt:

$$||F_n y||_2 = \sqrt{n} ||y||_2.$$
 (10 Punkte)

Aufgabe 3. (Mehrdimensionale Interpolation)

Es sei $\emptyset \neq D \subset \mathbb{R}^d$, $d \geq 2$, offen und zusammenhängend. Mit $n \geq 1$ seien $f_0, \ldots, f_n \colon D \to \mathbb{R}$ stetige Funktionen. Eine Verallgemeinerung des Interpolationsproblems in d Dimensionen ist

Bestimme
$$a_0, \ldots, a_n \in \mathbb{R}$$
 so, dass $\sum_{i=0}^n a_i f_i(x_j) = y_j, j = 0, \ldots, n$, gilt.

Zeige, dass paarweise verschiedene Punkte $x_0, \ldots, x_n \in D$ und Werte $y_0, \ldots, y_n \in \mathbb{R}$ existieren, so dass das Interpolationsproblem nicht lösbar ist.

(10 Punkte)

Programmieraufgabe 1. (FFT)

Es sei $v=(v_0,\dots,v_{n-1})\in\mathbb{C}^n$ mit $n=2^p,\,p\in\mathbb{N}$, ein beliebiger Vektor und $A=(a_{i,j})_{0\leq i,j\leq n-1}\in\mathbb{C}^{n\times n}$ die durch $a_{i,j}=v_{(i-j)\bmod n},\,0\leq i,j\leq n-1$, definierte Matrix. Matrizen von diesem Typ heißen zirkulant.

Wie lässt sich die Multiplikation einer zirkulanten Matrix $A \in \mathbb{C}^{n \times n}$ mit einem Vektor $x \in \mathbb{C}^n$ mit $O(n \log(n))$ Operationen durchführen?

Schreibe ein Programm, das dies tut.

(10 Punkte)

Abgabe innerhalb der Woche 28.06.–02.07.2010 im CIP-Pool