

Algorithmische Mathematik II

Sommersemester 2012 Prof. Dr. Beuchler Markus Burkow

Übungsblatt 1.

Abgabe am Präsenzaufgaben in den Übungen.

Aufgabe 1. (Vandermonde–Matrizen)

Die Vandermonde-Matrix $A \in \mathbb{R}^{n \times n}$ hat die Einträge $A_{ij} = (\lambda_i)^{j-1}$ wobei die $\lambda_i, 1 \le i, j \le n$ paarweise verschieden sind.

$$\begin{pmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{n-1} \\ 1 & \lambda_2 & \cdots & \lambda_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_n & \cdots & \lambda_n^{n-1} \end{pmatrix}$$

Zeigen Sie, daß sich die Determinante der Vandermonde–Matrix wie folgt berechnen lässt:

$$det(A) = \prod_{1 \le i < j \le n} (\lambda_j - \lambda_i)$$

Aufgabe 2. (Tridiagonalmatrizen)

Gegeben seien die Tridiagonalmatrizen

$$A_N = \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix} \in \mathbb{R}^{N \times N}, \ N > 1.$$

a) Zeigen Sie, dass die Eigenvektoren von A_N die Gestalt

$$z_k^{(N)} = \left(\sin\frac{\pi k}{N+1}, \sin\frac{2\pi k}{N+1}, \dots, \sin\frac{N\pi k}{N+1}\right)^T, \ k = 1, \dots, N$$

haben und $\lambda_k^{(N)} = 2(1-\cos\frac{\pi k}{N+1})$ die zugehörigen Eigenwerte sind.

b) Berechnen Sie $|\lambda|_{\max}(A_N)$ und $|\lambda|_{\min}(A_N)$.

Aufgabe 3. (Diagonalisierbarkeit)

Sei $A \in \mathbb{R}^{n \times n}$, (v_1, \dots, v_n) eine Basis des $\mathbb{R}^{n \times n}$ und $P := (v_1, \dots, v_n) \in \mathbb{R}^{n \times n}$. Zeigen Sie:

Dann ist P invertierbar und es sind äquivalent:

(i)
$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$
,

(ii) Für alle $j \in 1 \dots n$ is v_j Eigenvektor von A zum Eigenwert λ_j

Aufgabe 4. (Lineare Unabhängigkeit)

Zeigen Sie:

- Die endliche Menge der Funktionen $\{x^j\mid 0\leq j\leq n\}$ für $x\in\mathbb{R}$ und $n\in\mathbb{N}$ ist linear unabhängig.
- Die endliche Menge der Funktionen $\{\sin(jx)\mid 1\leq j\leq n\}$ für $x\in\mathbb{R}$ und $n\in\mathbb{N}$ ist linear unabhängig.

Tipp: Vollständige Induktion