

Einführung in die Numerische Mathematik

Sommersemester 2013 Prof. Dr. Sven Beuchler Daniel Wissel

Übungsblatt 3.

Abgabe am Dienstag, 30.04.2013

Aufgabe 10. (Projektion)

(4 Punkte)

Zeigen Sie die Eindeutigkeit aus Lemma 1.14 der Vorlesung:

Es sei $X \subset \mathbb{R}^d$ nichtleer, abgeschlossen und konvex, sowie $x \in \mathbb{R}^d$ beliebig. Dann gibt es ein **eindeutig** bestimmtes $y \in X$ mit

$$||y - x|| \le ||z - x|| \quad \forall z \ne y, z \in X.$$

Aufgabe 11. (Projektionsoperator)

(3 Punkte)

Zeigen Sie Lemma 1.16 aus der Vorlesung:

Es sei $X \subset \mathbb{R}^d$ nichtleer, abgeschlossen und konvex. Dann gilt

$$\|\mathfrak{P}_X(y) - \mathfrak{P}_X(x)\| \le \|y - x\|, \quad \forall x, y \in X,$$

d.h. der Operator $x \mapsto \mathfrak{P}_X(x)$ ist Lipschitzstetig und beschränkt.

Aufgabe 12. (Projektionsoperator)

(3 Punkte)

Zeigen Sie Lemma 1.17 aus der Vorlesung:

Es sei $X \subset \mathbb{R}^d$ nichtleer, abgeschlossen und konvex. Dann gilt

$$\langle x - y, \mathfrak{P}_X(x) - \mathfrak{P}_X(y) \rangle \ge 0, \quad \forall x, y \in \mathbb{R}^d.$$

Falls $\mathfrak{P}_X(x) \neq \mathfrak{P}_X(y)$, gilt sogar die strikte Ungleichung.

Aufgabe 13. (Tangentialkegel)

(6 Punkte)

Bestimmen Sie zunächst grafisch, dann rechnerisch für den zulässigen Bereich $X = \{x \in \mathbb{R}^2 \mid g(x) \leq 0\}$ jeweils den Tangentialkegel $\mathcal{T}_X(y)$ und den linearisierten Tangentialkegel $\mathcal{T}_{\text{lin}}(y)$ im Punkt y. Genügt y den Regularitätsbedingungen von Abadie?

a)
$$g(x) = (x_2 - x_1^5, -x_2)^T$$
, $y = (0, 0)^T$.

b)
$$g(x) = (x_2^2 - x_1 + 1, 1 - x_1 - x_2)^T, y = (1, 0)^T.$$

Programmieraufgabe 3. (Quadratisches Programm)

(10 Punkte)

Wir betrachten ein Optimierungsproblem der Form

min
$$f(x) := \frac{1}{2}x^TQx + c^Tx + \gamma$$
,
NB: $b_j^Tx = \beta_j \quad (j = 1, \dots, p)$,

wobei $Q \in \mathbb{R}^{n \times n}$ symmetrisch, $c, b_j \in \mathbb{R}^n$ und $\gamma, \beta_j \in \mathbb{R}$ (j = 1, ..., p). Es handelt sich hierbei um ein sog. quadratisches Programm mit Gleichheitsrestriktionen.

Man kann nun zeigen, dass für ein lokales Minimum x^* dieses Optimierungsproblems Lagrange-Multiplikatoren $\mu_j^* \in \mathbb{R}$, $(j=1,\ldots,p)$ existieren, so dass das Paar (x^*,μ^*) den KKT-Bedingungen

$$Qx + c + \sum_{j=1}^{p} \mu_j b_j = 0,$$

$$b_j^T x = \beta_j \quad (j = 1, \dots, p)$$

genügt.

- a) Schreiben Sie die obigen KKT-Bedingungen als lineares Gleichungssystem um!
- b) Betrachten Sie nun das folgende Beispiel:

$$\min f: \mathbb{R}^3 \to \mathbb{R},$$

$$f(x) = \frac{5}{2}x_1^2 - 2x_1x_2 - x_1x_3 + 2x_2^2 + 3x_2x_3 + \frac{5}{2}x_3^2 - 21x_1 - 60x_2 - 46x_3 + 5,$$

$$\text{NB:} \quad -x_1 + x_2 - x_3 = -5; \qquad 5x_1 + 3x_2 + x_3 = 37$$

Schreiben Sie nun ein Programm, welches hierzu einen KKT-Punkt sowie die zugehörigen Lagrange-Multiplikatoren bestimmt, indem das entsprechende lineare Gleichungssystem gelöst wird. Welchen Löser (LAPACK) setzen Sie ein?

Abgabe Mo 06.05. und Di 07.05. im CIP-Pool (www.iam.uni-bonn.de/pcpool/) in der Wegelerstraße. Ab Mo 29.04. hängt dort eine Terminliste für diese beiden Tage aus; bitte tragen Sie sich alleine oder in 2er Gruppen ein.

Gesamtpunktzahl: 16 + 10 Punkte