Hierarchical Matrices

Summer semester 2013
Prof. Mario Bebendorf
Jos Gesenhues

Exercise Sheet 1.

Exercise 1. (Block matrix rank)
Let $A \in \mathbb{C}^{m+n \times m+n}$ be regular and let

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where $A_{11} \in \mathbb{C}^{m \times m}, A_{22} \in \mathbb{C}^{n \times n}$. Furthermore let

$$
A^{-1}=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

where $B_{11} \in \mathbb{C}^{m \times m}, B_{22} \in \mathbb{C}^{n \times n}$.
Prove that $\operatorname{rank}\left(\mathrm{B}_{12}\right)=\operatorname{rank}\left(\mathrm{A}_{12}\right)$ and $\operatorname{rank}\left(\mathrm{B}_{21}\right)=\operatorname{rank}\left(\mathrm{A}_{21}\right)$.

Exercise 2. (Low rank update for the inverse)
Let $A \in \mathbb{C}^{n \times n}$ be regular and $U, V \in \mathbb{C}^{n \times k}$.
Proof that $\operatorname{det}\left(A+U V^{H}\right)=\operatorname{det}(A) \operatorname{det}\left(I+V^{H} A^{-1} U\right)$ and conclude that $A+U V^{H}$ is regular iff $I+V^{H} A^{-1} U$ is regular.
Give a low rank update formula for the inverse of $A+U V^{H}$.

Exercise 3. (Maximum entry of a low rank matrix)
Let $U=\left[u_{1}, \ldots, u_{k}\right], V=\left[v_{1}, \ldots, v_{k}\right] \in \mathbb{C}^{n \times k}$. The object of this exercise is to find the maximum entry (in modulus) of $U V^{H}$ without computing every entry $\left(U V^{H}\right)_{i j}$.
Let

$$
C:=\sum_{\ell=1}^{k} \operatorname{diag}\left(u_{\ell}\right) \otimes \operatorname{diag}\left(v_{\ell}\right)
$$

where \otimes is the Kronecker product. Find the eigenvalue $\lambda_{i j}$ of C corresponding to the eigenvector $\left(e_{i} \otimes e_{j}\right)$ where e_{i}, e_{j} are unit vectors. To compute the maximal eigenvalue the power iteration can be used. To exploit the structure of C, the starting vector has the form $x \otimes y$ where $x, y \in \mathbb{C}^{n}$. Show that $C(x \otimes y)$ has in general a higher "rank" than $x \otimes y$. What can be done to overcome this?

