

Hierarchical Matrices

Summer semester 2013 Prof. Mario Bebendorf Jos Gesenhues

Exercise Sheet 1.

Due date: Tuesday, 23.04.

Exercise 1. (Block matrix rank) Let $A \in \mathbb{C}^{m+n \times m+n}$ be regular and let

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

where $A_{11} \in \mathbb{C}^{m \times m}$, $A_{22} \in \mathbb{C}^{n \times n}$. Furthermore let

$$A^{-1} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

where $B_{11} \in \mathbb{C}^{m \times m}$, $B_{22} \in \mathbb{C}^{n \times n}$. Prove that $\operatorname{rank}(B_{12}) = \operatorname{rank}(A_{12})$ and $\operatorname{rank}(B_{21}) = \operatorname{rank}(A_{21})$.

Exercise 2. (Low rank update for the inverse)

Let $A \in \mathbb{C}^{n \times n}$ be regular and $U, V \in \mathbb{C}^{n \times k}$. Proof that $\det(A + UV^H) = \det(A) \det(I + V^H A^{-1}U)$ and conclude that $A + UV^H$ is regular iff $I + V^H A^{-1}U$ is regular. Give a low rank update formula for the inverse of $A + UV^H$.

Exercise 3. (Maximum entry of a low rank matrix)

Let $U = [u_1, \ldots, u_k], V = [v_1, \ldots, v_k] \in \mathbb{C}^{n \times k}$. The object of this exercise is to find the maximum entry (in modulus) of UV^H without computing every entry $(UV^H)_{ij}$. Let

$$C := \sum_{\ell=1}^k \operatorname{diag}(u_\ell) \otimes \operatorname{diag}(v_\ell)$$

where \otimes is the Kronecker product. Find the eigenvalue λ_{ij} of C corresponding to the eigenvector $(e_i \otimes e_j)$ where e_i, e_j are unit vectors. To compute the maximal eigenvalue the power iteration can be used. To exploit the structure of C, the starting vector has the form $x \otimes y$ where $x, y \in \mathbb{C}^n$. Show that $C(x \otimes y)$ has in general a higher "rank" than $x \otimes y$. What can be done to overcome this?