Hierarchical Matrices

Summer semester 2013
Prof. Mario Bebendorf
Jos Gesenhues
universitätbonn

Exercise Sheet 2.

Please send your source code and plots to gesenhues@ins.uni-bonn.de
Exercise 1. (Programming: PCA)
The objective of this exercise is to subdivide a set of points $X_{t}:=\left\{x_{i} \in \mathbb{R}^{3}, i \in t\right\}$ into two subsets indicated by t_{1} and t_{2} using principal component analysis as introduces in the lecture. In the case of points, $z_{i}=x_{i}$ and $\mu\left(x_{i}\right)=1$.
Let $t:=\{1, \ldots, n\}$. Generate n random three-dimensional points and implement a method to subdivide them using PCA. Give a permutation array to reorder the indices in t to comply with the remark after Lemma 1.14.

Exercise 2. (Programming: Admissibility condition)
Let $f: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ with $f(x, y)=1 /\|x-y\|_{2}$. For $x_{i} \in X, y_{j} \in Y, i, j=1, \ldots, n$, define $F_{i, j}:=f\left(x_{i}, y_{j}\right)$.
a) Write a function that generates n random points in a cuboid $C_{a, b, c}(x, y, z):=$ $[x-a, x+a] \times[y-b, y+b] \times[z-c, z+c]$.
b) Let $X \subset C_{1 / 2,1 / 2,1 / 2}\left(x_{t}, 0,0\right)$ and $Y \subset C_{1 / 2,1 / 2,1 / 2}(0,0,0)$. Compute the SVD of F for $n=1000$ and $x_{t}=20,10,2,1$ and plot the first 100 singular values using a semi-log plot. What do you observe? Use BLAS or LAPACK.

