

Hierarchical Matrices

Summer semester 2013 Prof. Mario Bebendorf Jos Gesenhues

Exercise Sheet 4.

Due date: Friday, 31.05.

Exercise 1. (Another Inversion Method)

Instead of using the recursive algorithm from chapter 2.6, it is also possible to invert a Hierachical Matrix in the following way:

Let $A \in \mathcal{H}(T_{I \times I}, k)$ be invertible. The inverse of A solves the nonlinear equation $f(X) := A - X^{-1} = 0$. Because f is differentiable, the Newton method is appliable.

- a) Derive the iteration rule for the Newton method.
- b) Let $X^{(0)}$ be a start value satisfying $||A|| ||X^{(0)} A^{-1}|| =: q < 1$, where $|| \cdot ||$ is a sub-multiplicative matrix norm. Show the quadratic convergency

$$\left\| X^{(m)} - A^{-1} \right\| \le q^{2^m} \left\| A^{-1} \right\|.$$

c) Let A be positive-definite. Let $X^{(0)}$ be chosen so that both $X^{(0)}$ and $A^{-1} - X^{(0)}$ are positive-definite. Show global convergence and that $X^{(m)}$ is positive-definite for every m.

Hint: For $F_m := I - A^{1/2} X^{(m)} A^{(1/2)}$ positive-definite show that $F_{m+1} = F_m^2$.

d) What is the downside of this method compared to the one from the lecture?