Summer semester 2013
Prof. Mario Bebendorf
Jos Gesenhues

Exercise Sheet 4.

Exercise 1. (Another Inversion Method)

Instead of using the recursive algorithm from chapter 2.6, it is also possible to invert a Hierachical Matrix in the following way:
Let $A \in \mathcal{H}\left(T_{I \times I}, k\right)$ be invertible. The inverse of A solves the nonlinear equation $f(X):=$ $A-X^{-1}=0$. Because f is differentiable, the Newton method is appliable.
a) Derive the iteration rule for the Newton method.
b) Let $X^{(0)}$ be a start value satisfying $\|A\|\left\|X^{(0)}-A^{-1}\right\|=: q<1$, where $\|\cdot\|$ is a sub-multiplicative matrix norm. Show the quadratic convergency

$$
\left\|X^{(m)}-A^{-1}\right\| \leq q^{2^{m}}\left\|A^{-1}\right\|
$$

c) Let A be positive-definite. Let $X^{(0)}$ be chosen so that both $X^{(0)}$ and $A^{-1}-X^{(0)}$ are positive-definite. Show global convergence and that $X^{(m)}$ is positive-definite for every m.
Hint: For $F_{m}:=I-A^{1 / 2} X^{(m)} A^{(1 / 2)}$ positive-definite show that $F_{m+1}=F_{m}^{2}$.
d) What is the downside of this method compared to the one from the lecture?

