Hierarchical Matrices

Summer semester 2013
Prof. Mario Bebendorf
Jos Gesenhues

Exercise Sheet 7.

Exercise 1. (Another Kind of Approximation)

Let

$$
s_{k}(x, y)=\kappa\left(x,[y]_{k}\right)^{T} W_{k}^{-1} \kappa\left([x]_{k}, y\right)
$$

be the k th order approximation of $\kappa(x, y)$ from the lecture.
Prove the representation

$$
s_{k}(x, y)=\sum_{\ell, m=1}^{k}(-1)^{\ell+m} \kappa\left(x, y_{\ell}\right) \kappa\left(x_{m}, y\right) \frac{\operatorname{det} W_{k}^{(m, \ell)}}{\operatorname{det} W_{k}}
$$

where $W_{k}^{(\ell, m)} \in \mathbb{R}^{(k-1) \times(k-1)}$ is W_{k} without the ℓ th row and the m th column.

Exercise 2. (Rank Reduction)

Let $A \in \mathbb{C}^{m \times n}$. Prove that for any $1 \leq i \leq m, 1 \leq j \leq n$ with $A_{i j} \neq 0$,

$$
\operatorname{rank}\left(A-A_{:, j} A_{i j}^{-1} A_{i,:}\right) \leq \operatorname{rank}(A)-1
$$

