Hierarchical Matrices

Summer semester 2013
Prof. Mario Bebendorf
Jos Gesenhues

Exercise Sheet 8.

Exercise 1. (ACA)

Let $R_{0} \in \mathbb{R}^{m \times n}$ and

$$
R_{k+1}=R_{k}-\frac{\left(R_{k}\right)_{1: m, j_{k+1}}\left(R_{k}\right)_{i_{k+1}, 1: n}}{\left(R_{k}\right)_{i_{k+1} j_{k+1}}}
$$

where i_{k+1} and j_{k+1} are chosen according to

$$
\left|\left(R_{k}\right)_{i_{k+1} j_{k+1}}\right|=\max _{i=1, \ldots, m}\left|\left(R_{k}\right)_{i j_{k+1}}\right| \neq 0 .
$$

Note: This is a transposed definition compared to the lecture.
a) Show that there are permutation matrices $P \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$ with

$$
\left(P R_{k} Q\right)_{i j}=0, \quad i, j=1, \ldots, k .
$$

b) Show that

$$
R_{k}=\left(A-(A Q)_{1: m, 1: k} X\right)-\Xi_{k}\left((P A)_{1: k, 1: n}-(P A Q)_{1: k, 1: k} X\right)
$$

for all $X \in \mathbb{R}^{k \times n}$, where $\Xi_{k}:=(A Q)_{1: m, 1: k}(P A Q)_{1: k, 1: k}^{-1}$.
c) Argue why ACA is mathematically equivalent to the LU-decomposition with partial pivoting of the matrix $A Q$. What is the difference between the two?
d) Show $\left\|\Xi_{k}\right\|_{\infty} \leq 2^{k}-1$.

