Computer lab
 Numerical Methods for Thin Elastic Sheets
 Summer term 2013

Prof. Dr. M. Rumpf - B. Heeren, R. Perl

Problem sheet 2
May 27th, 2013

Let \mathcal{T}_{h} be a regular triangulation of a two dimensional surface $\Omega \subset \mathbb{R}^{3}$ and $T \in \mathcal{T}_{h}$ denote a triangle with corner points $b_{1}, b_{2}, b_{3} \in \mathbb{R}^{3}$ and edge midpoints $b_{4}, b_{5}, b_{6} \in \mathbb{R}^{3}$.
Instead of considering the space linear of Finite Elements, you shall now study the space of quadratic Finite Elements

$$
\mathcal{V}_{h}:=\left\{v \in C^{0}(\Omega)|v|_{T} \in \mathcal{P}_{2}(T) \forall T \in \mathcal{T}_{h}\right\},
$$

where $\mathcal{P}_{2}(T)$ is the space of quadratic polynomials over T. Furthermore, let $\mathcal{B}_{h}:=$ $\left\{\phi_{1}, \phi_{2}, \ldots\right\}$ denote a basis of \mathcal{V}_{h}.

Figure 1: Quadratic Lagrange Triangle
(i) Compute the standard Lagrange basis of \mathcal{V}_{h} w.r.t $b_{i}(i=1, \ldots, 6)$ in barycentric coordinates.
(ii) Compute the mass matrix and stiffnes matrix in local coordinates with \mathcal{P}_{2} elements:

$$
\begin{aligned}
M_{i j} & =\int_{T} \phi_{i}(x) \phi_{j}(x) d a, \\
S_{i j} & =\int_{T} \nabla \phi_{i}(x) \nabla \phi_{j}(x) d a .
\end{aligned}
$$

(iii) Implement \mathcal{P}_{2} Finite Elements in your project directory. Therefore, copy the file labsheetTemplates/labsheet2/quadraticFE. h and implement the missing parts.
Furthermore, consider the problems of labsheet 1 with \mathcal{P}_{2} elements and compare the approximation error of \mathcal{P}_{2} elements with the approximation error of \mathcal{P}_{1} elements. Are your observations consistent with the theory?

