

Computer lab Numerical Methods for Thin Elastic Sheets Summer term 2013 Prof. Dr. M. Rumpf – B. Heeren, R. Perl

Problem sheet 2

Let \mathcal{T}_h be a regular triangulation of a two dimensional surface $\Omega \subset \mathbb{R}^3$ and $T \in \mathcal{T}_h$ denote a triangle with corner points $b_1, b_2, b_3 \in \mathbb{R}^3$ and edge midpoints $b_4, b_5, b_6 \in \mathbb{R}^3$. Instead of considering the space linear of Finite Elements, you shall now study the space of quadratic Finite Elements

$$\mathcal{V}_h := \{ v \in C^0(\Omega) \mid v|_T \in \mathcal{P}_2(T) \; \forall T \in \mathcal{T}_h \},\$$

where $\mathcal{P}_2(T)$ is the space of quadratic polynomials over *T*. Furthermore, let $\mathcal{B}_h := \{\phi_1, \phi_2, \ldots\}$ denote a basis of \mathcal{V}_h .

Figure 1: Quadratic Lagrange Triangle

- (i) Compute the standard Lagrange basis of \mathcal{V}_h w.r.t b_i (i = 1, ..., 6) in barycentric coordinates.
- (ii) Compute the mass matrix and stiffnes matrix in local coordinates with \mathcal{P}_2 elements:

$$egin{aligned} M_{ij} &= \int_T \phi_i(x) \phi_j(x) da, \ S_{ij} &= \int_T
abla \phi_i(x)
abla \phi_j(x) da \end{aligned}$$

(iii) Implement \mathcal{P}_2 Finite Elements in your project directory. Therefore, copy the file *labsheetTemplates/labsheet2/quadraticFE.h* and implement the missing parts. Furthermore, consider the problems of *labsheet 1* with \mathcal{P}_2 elements and compare the approximation error of \mathcal{P}_2 elements with the approximation error of \mathcal{P}_1 elements. Are your observations consistent with the theory?

May 27th, 2013