universitätbonn

Computer lab
 Numerical Methods for Thin Elastic Sheets
 Summer term 2013

Prof. Dr. M. Rumpf - B. Heeren, R. Perl

Problem sheet 4

Tasks:
(i) Compute

$$
\varepsilon\left[\theta_{h}\right]=\left(\begin{array}{c}
\theta_{h, x}^{1} \\
\theta_{h, y}^{2} \\
\theta_{h, y}^{1}+\theta_{h, x}^{2}
\end{array}\right)
$$

where

$$
\left.\theta_{h}\left(w_{h}\right)(\mathbf{x}(\xi, \eta))\right|_{T}=\binom{H_{x}(\xi, \eta)^{T} U}{H_{y}(\xi, \eta)^{T} U}
$$

as given as on labsheet 3 and

$$
\theta_{h, x}^{j}=\frac{\partial \theta_{h}^{j}\left(w_{h}\right)(\mathbf{x}(\xi, \eta))}{\partial x}
$$

where $\mathbf{x}(\xi, \eta)=\binom{x(\xi, \eta)}{y(\xi, \eta)}$ and $j=1,2$.
Mind: $\mathbf{x}(\xi, \eta)$ represents the global position and $\theta_{h, x^{\prime}}^{1} \ldots$ denote the derivative with respect to this global coordinate. This has to be expressed in local coordinates first.
(ii) Implement this in labsheetTemplates/labsheet4/DKTFE.h, i.e., the function evaluateGradient should return a Vec $3<$ DataType $>$ given by $\varepsilon\left[\theta_{h}\right]$.

