

Computer lab Numerical Methods for Thin Elastic Sheets Summer term 2013 Prof. Dr. M. Rumpf – B. Heeren, R. Perl

Problem sheet 5

June 17th, 2013

We have

$$\mathcal{W}_h := \{ w_h \in H_0^1(\omega) \mid \nabla w_h \text{ is continuous at all nodes of } \mathcal{T}_h, w_h \mid_T \in \mathcal{P}_{3, \text{red}} \forall T \in \mathcal{T}_h \}$$
$$\Theta_h := \{ \theta_h \in (H_0^1(\omega))^2 \mid \theta_h \mid_T \in (\mathcal{P}_2)^2 \text{ and } \theta_h \cdot n \in \mathcal{P}_1(E) \forall T \in \mathcal{T}_h, \forall E \in \mathcal{E}(T) \}$$

and want to minimize \mathcal{E} over \mathcal{W}_h , where

$$\mathcal{E}[w] = \frac{E\delta^3}{24(1-\nu^2)} \int_{\omega} \left((w_{,11}+w_{,22})^2 + 2(1-\nu)(w_{,12}^2-w_{,11}w_{,22}) \right) - \delta f \cdot w \, \mathrm{d}x \, .$$

Using the Kirchhof condition $\nabla w = \theta$ (i.e. $\theta = (\theta_1, \theta_2) \in \mathbb{R}^2$) we want to solve

$$< \mathcal{E}'[w], \phi > = 0 \quad \forall \phi \in \mathcal{W}_h$$
 $\iff a(\theta(w), \theta(\phi)) = \delta(f, \phi)_{L^2(\omega)} \quad \forall \phi \in \mathcal{W}_h$

with

$$a(\theta(w), \theta(\phi)) = \int_{\omega} \nabla \theta(w)^{T} C[E, \nu, \delta] \nabla \theta(\phi) \, \mathrm{d}x, \qquad C[E, \nu, \delta] := \frac{E\delta^{3}}{12(1-\nu^{2})} \begin{pmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{pmatrix}$$

where we use the notation $\nabla \theta(w) := [\theta(w)_{1,1}, \theta(w)_{2,2}, \theta(w)_{1,2} + \theta_{2,1}]^T$.

Now that we can evaluate $\nabla \theta$ at quadrature points we are able to set up the stiffness matrix $A \in \mathbb{R}^{3n,3n}$, where $n := |\mathcal{N}_h|$, with $A_{ij} = a(\theta_i, \theta_j)$ for basis functions θ_i of Θ_h and solve the linear system $A\overline{w} = \overline{f}$.

Note that $\bar{w} \in \mathbb{R}^{3n}$ as we have three degrees of freedom at each vertex $x_i \in \mathcal{N}_h$, namely $w(x_i), w_{,1}(x_i)$ and $w_{,2}(x_i)$.

When assembling the corresponding FE operator, it is crucial that the nine local degrees of freedom (cf. figure) are mapped correctly to their global positions in *A*. As the function values $w(x_i)$ at each vertex $x_i \in \mathcal{N}_h$ define naturally the first *n* DOFs (i.e. $w(x_i) \mapsto i$), we recomment to extend the mapping by $w_{,1}(x_i) \mapsto n + i$ and $w_{,2}(x_i) \mapsto 2n + i$.

When solving $A\bar{w} = \bar{f}$ one might want to impose different types

of boundary conditions. Prescribing $w(x_i) = 0$ for all $x_i \in \mathcal{N}_h \cap \partial \omega$ is called *simply supported* boundary condition, whereas we refer to a *clamped* boundary condition when we additionally prescribe derivatives at each boundary vertex. The corresponding boundary masks should make use of the local to global mapping described above.

As a first example we will consider a constant load on the right hand side, where

$$f|_{T} = \frac{|T|}{3}[q, 0, 0, q, 0, 0, q, 0, 0]$$

on each triangle *T*, i.e. $f_i = \frac{q}{3} \sum_{T:x_i \in T} |T|$ for i = 1, ..., n ($f_i = 0$ else) and $\overline{f} = (f_i)_i$.

Tasks:

- Complete the configurator DKTPlateTriangMeshConfigurator<> for the Discrete Kirchhoff Triangle by using the corresponding template in *labsheetTemplates/lab-sheet5/DKTFE.h.* In particular, implement the local to global mapping described above and set up boundary masks for clamped and simply supported boundary conditions.
- Implement a FE operator to assemble A. Therefore derive from a suitable FE operator provided in QuocMesh, e.g. aol::FELinMatrixWeightedStiffInterface<>, such that you only have to evaluate the matrix argument C[E, ν, δ] at each quadrature point.
- Complete the main program and test your DKT element with *ω* being a triangulation of [0, 1]² and constant loads on the right hand side.