

Algorithmische Mathematik II, Stochastik für Lehramt

Sommersemester 2014 Prof. Dr. Jochen Garcke Dr. Jutta Adelsberger

Übungsblatt 6.

Abgabe am Montag, 19.5.2014

Aufgabe 23. (Radioaktivität)

(4 Punkte)

Eine radioaktive Substanz emittiert in 10 Sekunden durchschnittlich 7,34 α -Teilchen. Bestimmen Sie anhand eines geeigneten Modells die Wahrscheinlichkeiten dafür, dass

- a) während einer Sekunde mindestens ein α -Teilchen emittiert wird,
- b) zwischen der Emission zweier α -Teilchen mindestens 5 bzw. 10 Sekunden vergehen,
- c) zwischen zwei Emissionen mindestens 2 Sekunden und höchstens 4 Sekunden liegen.

Aufgabe 24. (Symmetrische Verteilung)

(4 Punkte)

Die Zufallsvariable X sei symmetrisch um a verteilt, d.h. es existiert ein Wert $a \in \mathbb{R}$, so dass X - a und a - X die gleiche Verteilung besitzen. Zeigen Sie:

- a) Existiert der Erwartungswert von X, so gilt E(X) = a.
- b) Ist X stetig mit Verteilungsfunktion $F(x) := P(X \le x)$, so gilt $F(a) = \frac{1}{2}$.

Aufgabe 25. (Standard-Cauchy-Verteilung)

(4 Punkte)

Sei $C \geq 0$ sowie $f(x) = \frac{C}{1+x^2}$. Bestimmen Sie die Konstante C derart, dass f die Dichtefunktion einer stetigen Zufallsvariablen X ist. Bestimmen Sie außerdem die Verteilungsfunktion $P(X \leq x)$, den Erwartungswert sowie die Varianz von X.

Bem.: Die Verteilung heißt Standard-Cauchy-Verteilung und tritt häufig in Anwendungen auf. Ist beispielsweise eine Lampe, die Licht gleichmäßig in alle Richtungen abgibt, im Abstand 1 von einer Geraden platziert, so beschreibt die Cauchy-Verteilung die Intensität des Lichtes auf der Geraden.

Aufgabe 26. (Telefontarife)

(5 Punkte)

Die Länge (in Minuten) eines Mobilfunkgesprächs sei eine stetige Zufallsvariable X mit Dichtefunktion f(x) = 0 für x < 0 sowie $f(x) = Cxe^{-\frac{x}{\lambda}}$ für $x \ge 0$ mit $\lambda \ge 0$.

- a) Bestimmen Sie C > 0 sowie Erwartungswert und Varianz von X.
- b) Sei nun $\lambda = 3$. Eine Telefongesellschaft bietet ihren Kunden zwei Tarife zur Auswahl:
 - Tarif 1: pro Telefonat pauschal 0,40 Euro plus 0,05 Euro/Minute.
 - Tarif 2: in den ersten 10 Minuten 0,10 Euro/Minute, danach 0,05 Euro/Minute.

Der Kunde muss sich bei Vertragsabschluss für einen Tarif entscheiden. Berechnen Sie Erwartungswert und Varianz der Kosten für ein Gespräch in beiden Tarifen.

Aufgabe 27. (Normalverteilung)

(3 Punkte)

Eine Fabrik stellt Keramikkondensatoren her. Fertigungsbedingt variiert die Kapazität der einzelnen Bauteile, wobei wir annehmen, dass sie normalverteilt mit Erwartungswert $99\mu F$ und Standardabweichung $3\mu F$ ist.

- a) Wie hoch ist die Wahrscheinlichkeit, dass ein Kondensator eine Kapazität zwischen $95\mu F$ und $105\mu F$ besitzt?
- b) Eine Änderung der Fertigungstechnik ermöglicht eine günstigere Produktion, wobei der Erwartungswert nun, bei $2\mu F$ Standardabweichung, $100\mu F$ beträgt. Wie hoch ist nun der Anteil der Kondensatoren, deren Kapazität nicht in dem in a) angegebenen Intervall liegt?
- c) Ein Kunde der Fabrik benötigt Kondensatoren mit Kapazitäten zwischen $99\mu F$ und $101\mu F$. Wie groß darf die Standardabweichung maximal sein, damit bei einem Erwartungswert von $100\mu F$ durchschnittlich 90% der Fertigung für den Kunden geeignet sind?

Hinweis: Auf der Webseite der Vorlesung finden Sie eine Tabellierung der Verteilungsfunktion der Standardnormalverteilung.

Gesamtpunktzahl: 20 Punkte