

Numerical Simulation

Summer semester 2014 Prof. Dr. Carsten Burstedde Philipp Morgenstern

Exercise Sheet 10.

Due date: Tuesday, 15 July.

Exercise 13. The function $y : (x, t) \mapsto x^{-1/2}e^t$ is in the space $C(0, T, L^1(0, 1))$. Compute its norm. Which spaces $L^p(0, T, L^q(0, 1))$ does it also belong to?

(4 points)

Exercise 14. Consider the control problem

$$\min J(y, u) \coloneqq \frac{1}{2} \|y(T) - y_{\Omega}\|_{L^{2}(\Omega)}^{2} + \frac{\lambda}{2} \|w\|_{L^{2}(\Omega)}^{2}$$

with $w \in L^2(\Omega)$, $|w(x)| \le 1$ almost everywhere in Ω and

$$y_t - \Delta y = 0$$
 in Ω
 $\partial_v y + y = 0$ in Σ
 $y(0) = w$ in Ω

We assume that $\Omega \subset \mathbb{R}^N$ is a bounded Lipschitz domain with boundary Γ and

 $\Sigma = \Gamma \times (0, T), \quad y_{\Omega} \in L^{2}(\Omega), \quad \lambda \geq 0.$

Prove existence of an optimal control and derive necessary optimality conditions.

(8 points)