

Numerical Simulation

Summer semester 2014 Prof. Dr. Carsten Burstedde Philipp Morgenstern

Exercise Sheet 2.

Due date: Tuesday, 29 April.

Exercise 2. Let $f : \mathbb{R}^d \to \mathbb{R}$ be C^2 -continuous. Prove that

- a) $\nabla_x^2 f$ is self-adjoint and
- b) $\nabla_x^2 f u = \nabla_x (\nabla_x f, u)$ for all $u \in \mathbb{R}^d$.

(6 points)

Exercise 3. Consider two Hilbert spaces $\{Y, \|\cdot\|_Y\}$ and $\{U, \|\cdot\|_U\}$ with $y_d \in Y$, $\lambda \ge 0$ and some linear continuous operator $S : U \to Y$. Prove strict convexity of the functional

$$f(u) = \|Su - y_d\|_Y^2 + \lambda \|u\|_U^2,$$

provided that *S* is injective or $\lambda > 0$.

(4 points)