

Numerical Simulation

Summer semester 2014 Prof. Dr. Carsten Burstedde Philipp Morgenstern

Exercise Sheet 4.

Due date: Tuesday, 13 May.

Exercise 5. Let $c_0 \in L^{\infty}(\Omega)$ and $\alpha \in L^{\infty}(\Gamma)$ be non-negative almost everywhere with

$$\int_{\Omega} c_0(x)^2 \,\mathrm{d}x + \int_{\Gamma} \alpha(x)^2 \,\mathrm{d}x > 0.$$

Then the boundary value problem

$$-\Delta y + c_0 y = f \quad \text{in } \Omega, \partial_r y + \alpha y = g \quad \text{on } \partial \Omega.$$
(1.1.7)

has a unique weak solution *y* for any data $f \in L^2(\Omega)$ and $g \in L^2(\Gamma)$.

(6 points)

Exercise 6. Consider an arbitrary Hilbert Space $(H, (\cdot, \cdot))$, a weakly convergent sequence $u_n \rightarrow u$ and a strongly convergent sequence $v_n \rightarrow v$. Prove convergence of the scalar products $(u_n, v_n) \rightarrow (u, v)$.

(3 points)