

Numerical Simulation

Summer semester 2014 Prof. Dr. Carsten Burstedde Philipp Morgenstern

Exercise Sheet 5.

Due date: Tuesday, 20 May.

Exercise 7. Prove that the following functionals are Fréchet differentiable.

- a) $f(u) := \sin(u(1))$ for $u \in C([0, 1]))$
- b) $f(u) \coloneqq ||u||_{H}^{2}$ for u in some Hilbert space $(H, (\cdot, \cdot))$
- c) $f(u) \coloneqq \Delta(u^2)$ for $u \in H^2$.

Exercise 8. Show that in finite-dimensional spaces, continuity of the Gâteaux derivative implies total differentiability in the classical sense.

(3 points)

(6 points)

Exercise 9. Knowing that $L^1 \subset (L^{\infty})^*$, show that the operator

 $R: L^1(\mathbb{R}) \to L^{\infty}(\mathbb{R}), \ f \mapsto \int_{\mathbb{R}} f \, \mathrm{d}x$ (constant function)

is self-adjoint for L^1 -functions and discuss the adjoint operator for $(L^{\infty})^*$ -functions.

(3 points)