Scientific Computing II

Summer Semester 2014
Lecturer: Prof. Dr. Beuchler Assistent: Bastian Bohn

Excercise sheet 1.

Theoretical exercise 1. (Variant of the Bramble-Hilbert Lemma [5 points])
Let $\Omega \subset \mathbb{R}^{2}$ be a bounded, open and connected domain with Lipschitz boundary and cone condition and let $d=\sup _{a, b \in \Omega}\|a-b\|_{2}$. Let $\mathbb{Q}_{p}:=\operatorname{span}\left\{x^{k} y^{l} \mid 0 \leq k, l \leq p\right\}$ be the space of two-dimensional polynomials of degree at most p in each variable. Assume that for $p \in \mathbb{N}$ there exists a constant $C>0$ which is independent of d such that

$$
\inf _{q \in \mathbb{Q}_{p}}\|f-q\|_{H^{p+1}(\Omega)} \leq C[f]_{H^{p+1}(\Omega)}
$$

for all $f \in H^{p+1}(\Omega)$ where

$$
[f]_{H^{m}(\Omega)}:=\left(\left\|\frac{\partial^{m} f}{\partial x^{m}}\right\|_{L_{2}(\Omega)}^{2}+\left\|\frac{\partial^{m} f}{\partial y^{m}}\right\|_{L_{2}(\Omega)}^{2}\right)^{\frac{1}{2}}
$$

Prove that for $p \geq 2$ there exists a constant $C>0$ independent of d such that

$$
\inf _{q \in \mathbb{Q}_{p}} \sum_{i=0}^{p+1} d^{i}|f-q|_{H^{i}(\Omega)} \leq C d^{p+1}[f]_{H^{p+1}(\Omega)}
$$

for all $f \in H^{p+1}(\Omega)$.
Theoretical exercise 2. (Inverse estimates [5 points])
Let Ω and d be as in exercise 1. Let $p \in[1, \infty], m \in \mathbb{N}$ and $P \subset W^{m, p}(\Omega)$ a finitedimensional subspace. Prove that for $0 \leq t \leq s \leq m$ there exists a $C>0$ such that the inverse estimate

$$
|f|_{W^{s, p}} \leq C d^{t-s}|f|_{W^{t, p}}
$$

holds for all $f \in P$.
Theoretical exercise 3. ((Local) Quasi-uniformity [5 points])
For a finite element K let h_{K} be its diameter and ρ_{K} the diameter of the largest circle that can be inscribed in K. Assume that the corresponding family of triangulations is quasi-uniform. Denote by

$$
\tilde{K}:=\operatorname{int}\left(\left\{\cup K^{\prime} \mid \bar{K} \cap \bar{K}^{\prime} \neq \emptyset\right\}\right)
$$

the patch to the element K.
a) Prove that there exists a generic constant $C>0$ such that

$$
h_{K} \leq C h_{K^{\prime}} \quad \text { and } \quad \frac{h_{K}}{\rho_{K}} \leq C \frac{h_{K^{\prime}}}{\rho_{K^{\prime}}}
$$

for all $K^{\prime} \in \tilde{K}$.
b) Let $T_{K}(x):=A_{K} x+b_{K}$ be the affine linear transformation from the reference triangle $\hat{K}=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 1,0 \leq y \leq 1-x\right\}$ onto K. Prove that there exists a generic constant $C>0$ such that

$$
\begin{aligned}
\left\|A_{K}\right\| & \leq C h_{K} \\
\left\|A_{K}^{-1}\right\| & \leq C \rho_{K}^{-1} \\
C \rho_{K}^{2} & \leq\left|\operatorname{det}\left(A_{K}\right)\right| \leq C h_{K}^{2}
\end{aligned}
$$

where $\|\cdot\|$ denotes the Euclidean operator norm for matrices.
Theoretical exercise 4. (Lagrangian finite elements [5 points])
Let $\left(T_{h}\right)_{h}$ be a family of quasi-uniform triangulations of a domain Ω as above with Lagrangian elements. For one element K let the local basis functions be $\phi_{1}, \ldots, \phi_{n}$. Show that there exist constants C, \tilde{C} such that
a) $\left\|\phi_{i}\right\|_{L_{\infty}(\Omega)} \leq C \quad \forall i \in\{1, \ldots, n\}$
b) $\left\|\nabla \phi_{i}\right\|_{L_{\infty}(\Omega)} \leq \tilde{C} \cdot h_{K}^{-1} \quad \forall i \in\{1, \ldots, n\}$

