Theoretical exercise 1. (Hierarchical error estimator: Condition Number [10 points])
For a sequence of linear Lagrange element spaces in two dimensions \(V_0 \subset \ldots \subset V_L \) let the hierarchical decomposition be given by
\[
V_l = V_{l-1} \oplus W_l
\]
for all \(l = 1, \ldots, L \), where \(W_l \) is the space of nodal basis functions for which the basis points appeared first on level \(l \), i.e. \(W_l = \text{span}\{\phi_i^{(l)}\}_{i \in B_l} \) with the notation from the lecture. Calculate the order of the condition number for the stiffness matrix
\[
K_{11} = \left(a(\phi_i^{(l)}, \phi_j^{(l)}) \right)_{i,j \in B_l}
\]
of the standard Poisson problem with \(a(u, v) = \int_{[0,1]^2} \nabla u \cdot \nabla v \, dx \) for uniform refinements of the following FE-spaces:

a) Linear triangle elements given by

\[
\begin{array}{c}
V_0 \\
\rightarrow V_1 \\
\rightarrow \ldots
\end{array}
\]

b) Bilinear rectangular elements given by

\[
\begin{array}{c}
V_0 \\
\rightarrow V_1 \\
\rightarrow \ldots
\end{array}
\]

Theoretical exercise 2. (Constant of the strenghntened Cauchy inequality [10 points])
For the examples in this exercise the meshes are the same as in Exercise 1. For \(a(u, v) = \int_{[0,1]^2} \nabla u \cdot \nabla v \, dx \) and the hierarchical enrichment decomposition \(V_l := V_{l-1} \oplus W_l \) where \(W_l := \text{span}\{\phi_i^{(l)} \mid i \in B_l\} \) is the complementary space of basis functions which are new on level \(l \), calculate an as low as possible upper bound for the constant \(\gamma \) from the strengthened Cauchy inequality for both linear triangular as well as bilinear quadratic elements.