Scientific Computing II

Summer Semester 2014
Lecturer: Prof. Dr. Beuchler Assistent: Bastian Bohn

Excercise sheet 10.

Theoretical exercise 1. (Hierarchical error estimator: Condition Number [10 points])
For a sequence of linear Lagrange element spaces in two dimensions $\mathbb{V}_{0} \subset \ldots \subset \mathbb{V}_{L}$ let the hierarchical decomposition be given by

$$
\mathbb{V}_{l}=\mathbb{V}_{l-1} \oplus \mathbb{W}_{l}
$$

for all $l=1, \ldots, L$, where \mathbb{W}_{l} is the space of nodal basis functions for which the basis points appeared first on level l, i.e. $\mathbb{W}_{l}=\operatorname{span}\left\{\phi_{i}^{(l)}\right\}_{i \in B_{l}}$ with the notation from the lecture. Calculate the order of the condition number for the stiffness matrix

$$
K_{11}=\left(a\left(\phi_{i}^{(l)}, \phi_{j}^{(l)}\right)\right)_{i, j \in B_{l}}
$$

of the standard Poisson problem with $a(u, v)=\int_{[0,1]^{2}} \nabla u \cdot \nabla v d x$ for uniform refinements of the following FE-spaces:
a) Linear triangle elements given by

b) Bilinear rectangular elements given by

Theoretical exercise 2. (Constant of the strenghtened Cauchy inequality [10 points])
For the examples in this exercise the meshes are the same as in Exercise 1. For $a(u, v)=$ $\int_{[0,1]^{2}} \nabla u \cdot \nabla v d x$ and the hierarchical enrichment decomposition $\mathbb{V}_{l}:=\mathbb{V}_{l-1} \oplus \mathbb{W}_{l}$ where $\mathbb{W}_{l}:=\operatorname{span}\left\{\phi_{i}^{(l)} \mid i \in B_{l}\right\}$ is the complementary space of basis functions which are new on level l, calculate an as low as possible upper bound for the constant γ from the strenghtened Cauchy inequality for both linear triangular as well as bilinear quadratic elements.

