Scientific Computing II

Summer Semester 2014
Lecturer: Prof. Dr. Beuchler Assistent: Bastian Bohn

Excercise sheet 6.

Theoretical exercise 1. (L_{∞} error estimator [5 points])
Let $\Omega \subset \mathbb{R}^{2}$ be a bounded, open and connected domain with Lipschitz boundary and cone condition with $x_{0} \in \Omega$. Furthermore, let $a(u, v):=\int_{\Omega} \nabla u \cdot \nabla v d x$ for $u, v \in H_{0}^{1}(\Omega)$. Let $\rho_{0}>0$ be arbitrary, and let $\delta \in C_{0}^{\infty}(\Omega)$ be such that there for a constant $C>0$:

$$
\begin{aligned}
\int_{\Omega} \delta(x) d x & =1 \\
0 \leq \delta(x) & \leq C \rho_{0}^{-2} \forall x \in \Omega \\
\operatorname{supp}(\delta) & \subset B_{0}:=\left\{x \in \Omega \left\lvert\,\left\|x-x_{0}\right\| \leq \frac{\rho_{0}}{2}\right.\right\}
\end{aligned}
$$

With the standard notations from the lecture, prove that

$$
a\left(G, u-u_{h}\right)=\sum_{s=1}^{\text {\#elements }} \int_{\tau_{s}}\left(G-I_{h} G\right) r_{h} d x+\sum_{r=1}^{\text {\#edges }} \int_{e_{r}} R_{h}\left(G-I_{h} G\right) d s
$$

where G is the regularized Green's function to the regularized delta function δ and I_{h} is the interpolation operator.

Theoretical exercise 2. (Linear combination of bubble functions [5 points])
For a uniform FE triangulation on a domain Ω as in exercise 1 , let $\tilde{\tau}$ be the patch to the element τ and set

$$
v(x)=\sum_{\tau_{s} \subset \tilde{\tau}} \alpha_{s} \phi_{I, s}(x)+\sum_{e_{r} \subset \partial \tau} \beta_{r} \phi_{O, r}(x)
$$

where $\phi_{I, s}$ is the interior bubble function of the element τ_{s} and $\phi_{O, r}$ is the edge bubble function corresponding to e_{r}. The coefficients α_{s}, β_{r} are defined via

$$
\begin{aligned}
\int_{\tau_{s}} v \operatorname{sgn}(\bar{r}) d x & =h_{\tau_{s}}^{2} \forall \tau_{s} \in \tilde{\tau} \\
\int_{e_{r}} v \operatorname{sgn}(\bar{R}) d s & =\left\{\begin{array}{cl}
h_{\tau} & \text { if } e_{r} \subset \partial \tau \backslash \partial \Omega \\
0 & \text { else }
\end{array}\right.
\end{aligned}
$$

where $h_{\tau_{s}}$ is the diameter of τ_{s} and \bar{r}, \bar{R} denote piecewise constant approximations to the interior residuals and the boundary residuals. Prove that the coefficients α_{s}, β_{r} (for $\left\{r \mid e_{r} \nsubseteq \partial \Omega\right\}$) are uniformly bounded (without dependence of the constants on the element diameters) from above and below.

Theoretical exercise 3. (Regularized Green's functions [Bonus: 5 points])
For the setting from exercise 1 assume additionally that there exists $1<p_{0} \leq \frac{4}{3}$ such that

$$
\|G\|_{W^{2, p_{0}}(\Omega)} \leq \tilde{C}\|\delta\|_{L_{p_{0}}(\Omega)} .
$$

Prove that there exists a $C>0$ independent of p and ρ_{0} such that

$$
|G|_{W^{2, p}(\Omega)} \leq \frac{C \rho_{0}^{-4(p-1)}}{(p-1)^{2}}
$$

for $p \downarrow 1$.
Hint: You may assume that there exists a $c>0$ such that

$$
\|G\|_{L_{\frac{p}{p-1}}(\Omega)} \leq \frac{c}{(p-1)^{\frac{1}{2}}}\|\nabla G\|_{L_{2}(\Omega)} \leq \frac{c}{p-1}\|G\|_{L_{p}(\Omega)}
$$

for $p \downarrow 1$. This follows from Sobolev inequalities.

