Scientific Computing II

Summer Semester 2014
Lecturer: Prof. Dr. Beuchler Assistent: Bastian Bohn

Excercise sheet 8.

Theoretical exercise 1. (Upper bound for the BPX decomposition [20 points])
Let $\Omega \subset \mathbb{R}^{2}$ be a bounded, open and connected domain with Lipschitz boundary and cone condition. Define $a(u, v):=\int_{\Omega} \nabla u \nabla v d x$. for $u, v \in H_{0}^{1}(\Omega)$.
Let \mathbb{V}^{l} be a sequence of nested piecewise linear FE-spaces with basis $\phi_{i}^{l}, l=0, \ldots, L$ and $i=1, \ldots, N_{l}$ created by uniformly refining an initial mesh T_{0} into meshes T_{l}. The (largest) meshwidth in T_{l} is denoted by h_{l}.
Prove that for the BPX decomposition

$$
\mathbb{V}^{L}:=\sum_{l=0}^{L} \sum_{i=1}^{N_{l}} \mathbb{V}_{i}^{L}
$$

with $\mathbb{V}_{i}^{L}=\operatorname{span}\left\{\phi_{i}^{l}\right\}$ it holds

$$
\begin{equation*}
a(u, u) \leq c \sum_{l=0}^{L} \sum_{i=1}^{N_{l}} a\left(u_{i}^{l}, u_{i}^{l}\right) \tag{1}
\end{equation*}
$$

for some constant $c>0$ (independent of L) and $u \in \mathbb{V}^{L}, u_{i}^{l} \in \mathbb{V}_{i}^{l}$ and $u=\sum_{l=0}^{L} \sum_{i=1}^{N_{l}} u_{i}^{l}$.

To this end, follow the subtasks:
a) Prove that

$$
a(u, u) \leq\|\Theta\|_{2}^{2} \sum_{l=0}^{L} \sum_{i=1}^{N_{l}} a\left(u_{i}^{l}, u_{i}^{l}\right)
$$

where $\Theta=\left(\theta_{i, j}^{k, l}\right)_{(k, i),(l, j)}$ is the matrix of all angles

$$
\theta_{i, j}^{k, l}:=\cos \left(\varangle \mathbb{V}_{i}^{k}, \mathbb{V}_{j}^{l}\right)=\sup _{u \in \mathbb{V}_{i}^{k}, v \in \mathbb{V}_{j}^{l}} \frac{a(u, v)}{\sqrt{a(u, u) a(v, v)}}
$$

b) Let $\Omega_{i}^{l}:=\operatorname{supp}\left(\phi_{i}^{l}\right)$ and let w.l.o.g. $k \leq l$. Prove that $\theta_{i, j}^{k, l}=0$ if
(i) $\operatorname{int}\left(\Omega_{i}^{k} \cap \Omega_{j}^{l}\right)=\emptyset$ or
(ii) $\Omega_{j}^{l} \subset \tau_{i, *}^{k}$, where $\tau_{i, *}^{k}$ is one element in the support of ϕ_{i}^{k}.

Prove that there exists an $c>0$ such that in all other cases $\theta_{i, j}^{k, l} \leq c \frac{h_{l}}{h_{k}}$.
c) Let $\Theta^{k, l}:=\left(\theta_{i, j}^{k, l}\right)_{i=1, \ldots, N_{k} \text { and } j=1, \ldots, N_{l}}$. Prove the following two estimates:
(i) For $k>l$ it holds $\left\|\Theta^{k, l}\right\|_{1} \leq c \frac{h_{k}}{h_{l}}$.
(ii) For $k \leq l$ it holds $\left\|\Theta^{k, l}\right\|_{1} \leq c$.
d) Let $\tilde{\Theta}:=\left(\left\|\Theta^{k, l}\right\|_{1} \cdot\left(\frac{h_{l}}{h_{k}}\right)^{\frac{1}{2}}\right)_{k, l}$. Prove that there exists a constant $\tilde{c}>0$ such that

$$
\|\tilde{\Theta}\|_{1} \leq \tilde{c} .
$$

e) Prove that for symmetric, real matrices A any eigenvalue λ fulfills $|\lambda| \leq\|A\|_{1}$. Prove that for a block matrix $A=\left(A_{a, b}\right)_{a, b}$ with matrices $A_{a, b}$ it holds $\|A\|_{1} \leq\|\bar{A}\|_{1}$ where $\bar{A}=\left(\left\|A_{a, b}\right\|_{1}\right)_{a, b}$.
f) Combine the above proven results to prove (1).

