

Scientific Computing II

Summer Semester 2014 Lecturer: Prof. Dr. Beuchler Assistent: Bastian Bohn

Excercise sheet 8.

Closing date **03.06.2014**.

Theoretical exercise 1. (Upper bound for the BPX decomposition [20 points])

Let $\Omega \subset \mathbb{R}^2$ be a bounded, open and connected domain with Lipschitz boundary and cone condition. Define $a(u, v) := \int_{\Omega} \nabla u \nabla v dx$. for $u, v \in H_0^1(\Omega)$. Let \mathbb{V}^l be a sequence of nested piecewise linear FE-spaces with basis ϕ_i^l , $l = 0, \ldots, L$

Let \mathbb{V}^i be a sequence of nested piecewise linear FE-spaces with basis ϕ_i^i , $l = 0, \ldots, L$ and $i = 1, \ldots, N_l$ created by uniformly refining an initial mesh T_0 into meshes T_l . The (largest) meshwidth in T_l is denoted by h_l .

Prove that for the BPX decomposition

$$\mathbb{V}^L := \sum_{l=0}^L \sum_{i=1}^{N_l} \mathbb{V}_i^L$$

with $\mathbb{V}_i^L = \operatorname{span}\{\phi_i^l\}$ it holds

$$a(u, u) \le c \sum_{l=0}^{L} \sum_{i=1}^{N_l} a(u_i^l, u_i^l)$$
(1)

for some constant c > 0 (independent of L) and $u \in \mathbb{V}^L$, $u_i^l \in \mathbb{V}_i^l$ and $u = \sum_{l=0}^L \sum_{i=1}^{N_l} u_i^l$.

To this end, follow the subtasks:

a) Prove that

$$a(u, u) \le \|\Theta\|_2^2 \sum_{l=0}^L \sum_{i=1}^{N_l} a(u_i^l, u_i^l),$$

where $\Theta = \left(\theta_{i,j}^{k,l}\right)_{(k,i),(l,j)}$ is the matrix of all angles

$$\theta_{i,j}^{k,l} := \cos(\sphericalangle \mathbb{V}_i^k, \mathbb{V}_j^l) = \sup_{u \in \mathbb{V}_i^k, v \in \mathbb{V}_j^l} \frac{a(u,v)}{\sqrt{a(u,u)a(v,v)}}$$

- b) Let $\Omega_i^l := \operatorname{supp}(\phi_i^l)$ and let w.l.o.g. $k \leq l$. Prove that $\theta_{i,j}^{k,l} = 0$ if
 - (i) $\operatorname{int}(\Omega_i^k \cap \Omega_j^l) = \emptyset$ or
 - (ii) $\Omega_j^l \subset \tau_{i,*}^k$, where $\tau_{i,*}^k$ is one element in the support of ϕ_i^k .

Prove that there exists an c > 0 such that in all other cases $\theta_{i,j}^{k,l} \le c \frac{h_l}{h_k}$.

c) Let
$$\Theta^{k,l} := \left(\theta_{i,j}^{k,l}\right)_{i=1,\dots,N_k \text{ and } j=1,\dots,N_l}$$
. Prove the following two estimates:

- (i) For k > l it holds $\|\Theta^{k,l}\|_1 \le c \frac{h_k}{h_l}$.
- (ii) For $k \leq l$ it holds $\|\Theta^{k,l}\|_1 \leq c$.
- d) Let $\tilde{\Theta} := \left(\|\Theta^{k,l}\|_1 \cdot \left(\frac{h_l}{h_k}\right)^{\frac{1}{2}} \right)_{k,l}$. Prove that there exists a constant $\tilde{c} > 0$ such that $\|\tilde{\Theta}\|_1 \le \tilde{c}$.
- e) Prove that for symmetric, real matrices A any eigenvalue λ fulfills $|\lambda| \leq ||A||_1$. Prove that for a block matrix $A = (A_{a,b})_{a,b}$ with matrices $A_{a,b}$ it holds $||A||_1 \leq ||\bar{A}||_1$ where $\bar{A} = (||A_{a,b}||_1)_{a,b}$.
- f) Combine the above proven results to prove (1).