

Abgabe: 8. Juli 2015

Übungen zu Algorithmische Mathematik II (V1G6)

Sommersemester 2015

Prof. Dr. Martin Rumpf — Dr. Orestis Vantzos — Dipl.-Math. Behrend Heeren

Übungsblatt 5

Aufgabe 1 4 Punkte

Für $\mathbf{A} \in \mathbb{R}^{n,n}$ sei $|||\mathbf{A}|||_2$ die durch die euklidische Norm auf \mathbb{R}^n definierte Operatornorm auf $\mathbb{R}^{n,n}$, und $||\mathbf{A}||_F := \left(\sum_{i,j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}$ die Frobenius-Norm. Zeigen Sie:

(i)
$$|||\mathbf{A}|||_2 = \sqrt{\rho(\mathbf{A}^T\mathbf{A})}$$
, wobei $\rho(\mathbf{B}) := \max_i |\lambda_i|$ für λ_i Eigenwerte von $\mathbf{B} \in \mathbb{R}^{n,n}$.

Hinweis: Benutzen Sie die Polarzerlegung $\mathbf{A} = \mathbf{R}\mathbf{U}$, wobei $\mathbf{R} \in \mathbb{R}^{n,n}$ orthogonal und $\mathbf{U} \in \mathbb{R}^{n,n}$ symmetrisch ist.

(ii)
$$|||\mathbf{A}|||_2 \le ||\mathbf{A}||_F \le \sqrt{n}|||\mathbf{A}|||_2$$
.

Aufgabe 2 4 Punkte

Zeigen Sie $|||\mathbf{A}|||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$ für $\mathbf{A} \in \mathbb{R}^{n,n}$.

Aufgabe 3 4 Punkte

Sei $f \in C([0,1])$. Betrachten Sie die Gleichung

$$-u''(x) = f(x), \quad x \in [0,1],$$

mit Randdaten $u(0) = u_0$ und $u(1) = u_1$.

- (a) Geben Sie eine explizite Lösung der Gleichung an. Verfahren Sie dabei wie folgt: Berechnen Sie eine Funktion \tilde{u} durch zweimaliges Aufintegrieren von f und berechnen Sie u als eine affin-lineare Korrektur von \tilde{u} .
- (b) Sei $u \in C^2([0,1])$ eine Lösung der Gleichung für konstantes f. Für $N \in \mathbb{N}$ betrachten wir die uniforme Diskretisierung $x_i = ih$ für i = 0, ..., N und $h = N^{-1}$. Sei u_h die Gitterfunktion der diskreten Lösung, d.h. $-\partial_h^- \partial_h^+ u_h = f$, $u_h(0) = u_0$, $u_h(1) = u_1$. Zeigen Sie, dass $u_h(x_i) = u(x_i)$ gilt.

Aufgabe 4 4 Punkte

(i) Zeigen Sie, dass im \mathbb{R}^2 der Laplace-Operator Δ in Polarkoordinaten (r,ϕ) , welche durch

$$(x,y) = \Phi(r,\phi) = (r\cos(\phi), r\sin(\phi))$$

definiert sind, wie folgt geschrieben werden kann:

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2} .$$

Hinweis: Es gilt $(D\Phi)^{-1} = D\Phi^{-1} \circ \Phi$.

(ii) Weisen Sie mit Hilfe von (i) nach, dass die Funktion $u(r,\phi) := r^{\frac{2}{3}} \sin\left(\frac{2}{3}\phi\right)$ im Gebiet $G := (-1,1) \times (-1,1) \setminus ([0,1] \times [-1,0])$ die Gleichung

$$\Delta u = 0$$
 in G ,

erfüllt, aber im Nullpunkt (0,0) nicht differenzierbar ist.