

Numerical Simulation

Summer Semester 2015 Lecturer: Prof. Dr. André Uschmajew Assistent: Bastian Bohn

Excercise sheet 11.

Closing date **07.07.2015**.

Theoretical exercise 1. (Enhanced minimization functional [6 points])

For $W(0,T) := W^{1,2}(0,T; H^1(\Omega), L^2(\Omega))$, consider the model problem of optimal boundary control with enhanced minimization functional:

$$\min_{u \in L^2(\Sigma), y \in W(0,T)} \frac{1}{2} \| y(\cdot,T) - y_\Omega \|_{L^2(\Omega)}^2 + \frac{\lambda}{2} \| u \|_{L^2(\Sigma)}^2 + \iint_Q a_Q y \, \mathrm{d}x \mathrm{d}t + \iint_{\Sigma} u_\Sigma u \, \mathrm{d}s \mathrm{d}t$$

with $y_{\Omega} \in L_2(\Omega), a_Q \in L^2(Q), u_{\Sigma} \in L^2(\Sigma)$ for $Q = \Omega \times (0,T)$ with Lipschitz domain Ω and $\Sigma = \partial \Omega \times (0,T)$ such that

$y_t - \Delta y$	=	0	in Q
$\partial_{\nu}y + \alpha y$	=	eta u	on Σ
$y(\cdot,0)$	=	$y_0(\cdot)$	in Ω

and $u_a \leq u \leq u_b$ almost everywhere for $u_a, u_b \in L^2(\Sigma)$. Here, $y_0 \in L^2(\Omega), \beta \in L^{\infty}(\Sigma)$ and $\alpha \in L^{\infty}(\Sigma)$ is non-negative almost everywhere.

Prove that also for this problem an optimal control exists and derive the corresponding variational inequality and the adjoint equation.

Theoretical exercise 2. (Monotone Lipschitz operators [6 points])

Let V be a real Hilbert space and $A:V\to V^*$ be a strongly monotone and Lipschitz-continuous operator, i.e.

$$\exists \beta_0 > 0: \ \langle Au - Av, u - v \rangle_{V^*, V} \ge \beta_0 \|u - v\|_V^2$$

and

$$\exists L > 0: ||Au - Av||_{V^*} \le L ||u - v||_V$$

for all $u, v \in V$.

Prove that for every $f \in V^*$ there exists exactly one $v \in V$ such that Av = f, i.e. $A^{-1}: V^* \to V$ exists. Prove furthermore that A^{-1} is Lipschitz continuous with Lipschitz constant $\frac{1}{\beta_0}$.

Theoretical exercise 3. (Fréchet differentiability in L_p [4 points])

Let $\Phi: L^p(0,1) \to L^q(0,1)$ be defined by $\Phi(f)(\cdot) = \sin(f(\cdot))$. Prove that Φ is not Fréchet differentiable for $1 \le p \le q < \infty$.