

Numerical Simulation

Summer Semester 2015 Lecturer: Prof. Dr. A. Uschmajew Assistent: Bastian Bohn

Excercise sheet 2.

Closing date 28.04.2015.

Theoretical exercise 1. (Frechet Derivatives [6 points])

Show that the function f is Frechet differentiable and calculate the Frechet derivatives for the following cases.

a) Let X be a real Hilbert space:

$$f(u) := \|u\|_X^2.$$

b) Let X be a real Hilbert space, $A: X \to X$ a linear, bounded and self-adjoint operator. Let furthermore $b \in X, c \in \mathbb{R}$:

$$f(u) := \frac{1}{2} \langle u, Au \rangle_X - \langle b, u \rangle_X + c.$$

c) Let $X = C^1([0,1])$ and let $L: [0,1] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be C^1 :

$$f(u) := \int_0^1 L(t, u(t), u'(t)) \mathrm{d}t.$$

Theoretical exercise 2. (Equivalence for constrained equation system [7 points]) Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^n$ be fixed. Prove that the following are equivalent:

- (i) $A^T x = b$ has a solution $x \in \mathbb{R}^m$ with $x \ge 0$.
- (ii) For all $y \in \mathbb{R}^n$ with $Ay \ge 0$ it holds $b^T y \ge 0$.

The vector inequalities are to be understood componentwise.

Theoretical exercise 3. (Duality for best approximation [7 points])

Let X be a real Banach space, let $M \subset X$ be a linear subspace and let $b \in M$ be fixed. Define $M^{\perp} := \{f \in X^* \mid f(u) = 0 \ \forall u \in M\}$ and $B(M^{\perp}) := \{f \in M^{\perp} \mid ||f|| \leq 1\}$. Prove that

$$\sup_{f \in B(M^{\perp})} f(b) =: D$$

has a maximizer in $B(M^{\perp})$ and $D = \inf_{u \in M} ||b - u||$.