

## Numerical Simulation

Summer Semester 2015 Lecturer: Prof. Dr. André Uschmajew Assistent: Bastian Bohn



## Excercise sheet 3.

Closing date **05.05.2015**.

Theoretical exercise 1. (Tangent Vectors [6 points])

Recall definition 1.27 from the lecture: Let U be a Banach space,  $u_0 \in M \subseteq U$ . Then  $h \in U$  is called tangent vector to M at  $u_0$  if there exist  $\epsilon > 0$  and an admissible curve  $\gamma : [0, \epsilon) \to U$  such that  $\gamma(t) = u_0 + th + o(t) \in M$  for  $t \in [0, \epsilon)$ .

Prove that the set of all tangent vectors to M at  $u_0$  is a closed cone.

Theoretical exercise 2. (Krein's Extension Theorem [6 points])

Let U be a Banach space, let  $K \subseteq U$  be a convex cone and let  $L \subseteq U$  be a linear subspace of U such that  $L \cap \operatorname{int}(K) \neq \emptyset$ . Let furthmore  $f: L \to \mathbb{R}$  be a continuous linear functional such that  $f(u) \ge 0 \forall u \in L \cap K$ .

Prove that f can be extended to a continuous linear functional  $\overline{f}: U \to \mathbb{R}$  such that  $f(u) \ge 0 \ \forall u \in K$ .

Theoretical exercise 3. (Minimization of motion [6 points])

Let  $A: C^1([-1,1]) \to \mathbb{R}$  and  $B: C^1([-1,1]) \to \mathbb{R}$  be defined by

$$A(f) := \int_{-1}^{1} \sqrt{1 + f'(x)^2} \mathrm{d}x \quad \text{ and } \quad B(f) := \int_{-1}^{1} f(x) \mathrm{d}x.$$

Consider the constrained minimization problem

$$A(f) \to \min!$$
 s.t.  $B(f) = \frac{\pi}{2}, f(-1) = f(1) = 0.$ 

Show that Theorem 1.32 from the lecture is applicable and calculate the Lagrangian. Prove that there exist Lagrange multipliers such that  $f^*(x) := \sqrt{1-x^2}$  is a root of the derivative of the Lagrangian.