Numerical Simulation

Summer Semester 2015
Lecturer: Prof. Dr. André Uschmajew
Assistent: Bastian Bohn

Excercise sheet 4.

Theoretical exercise 1. (Dual Cones [6 points])
Let U be a Banach space and $K \subseteq U$ a nonempty cone. Recall that the dual cone is defined by

$$
K^{+}:=\left\{g \in U^{*} \mid g(u) \geq 0 \forall u \in K\right\} .
$$

Furthermore for a fixed $f \in U^{*}, f \neq 0$, let us define the cones

$$
K_{=}:=\{u \in U \mid f(u)=0\} \quad \text { and } \quad K_{\leq}:=\{u \in U \mid f(u) \leq 0\}
$$

a) Prove that $\left(K_{=}\right)^{+}=\{\lambda f \mid \lambda \in \mathbb{R}\}$ and $\left(K_{\leq}\right)^{+}=\{\lambda f \mid \lambda \in(-\infty, 0]\}$.
b) Let K be closed and let $u \in U$ be such that

$$
g(u) \geq 0 \quad \forall g \in K^{+}
$$

Prove that $u \in K$.
Theoretical exercise 2. (Lagrange Duality [6 points])
Let U be a linear space and let Z be a normed space. Let $f: C \rightarrow \mathbb{R}$ be a convex function where $C \subseteq U$ is convex. Let furthermore $G: U \rightarrow Z$ be convex and let $K \subseteq Z$ be a nonnegative cone. Assume that the Slater condition holds and that

$$
\mu_{0}:=\inf _{x \in C, G(x) \leq_{K} 0} f(x)
$$

is finite.
Let us define $\phi: K^{+} \rightarrow \mathbb{R}$ by

$$
\phi\left(z^{*}\right):=\inf _{x \in C}\left(f(x)+z^{*}(G(x))\right.
$$

Recall the definition of $\omega: \Gamma \rightarrow \mathbb{R} \cup\{-\infty\}$ from the lecture:

$$
\omega(z):=\inf \left\{f(u) \mid u \in C, G(u) \leq_{K} z\right\}
$$

Here $\Gamma=\left\{z \in Z \mid \exists u \in C\right.$ s.t. $\left.G(u) \leq_{K} z\right\}$.
a) Prove that

$$
\phi\left(z^{*}\right)=\inf _{z \in \Gamma}\left(\omega(z)+z^{*}(z)\right)
$$

b) Prove that

$$
\mu_{0}=\sup _{z^{*} \in K^{+}} \phi\left(z^{*}\right)
$$

and that the supremum on the right hand side is attained.

Programming exercise 1. (Newton-Lagrange Method)

The programming exercises have to be done in $\mathrm{C} / \mathrm{C}++$. Please mail your code to bohn@ins.uni-bonn.de by 12th of May.
Recall theoretical exercise 2 from sheet 1, i.e. consider the constrained minimization problem

$$
\min _{(x, y) \in \mathbb{R}^{2}} f(x, y):=3 x^{2}+y^{2} \text { such that } g(x, y):=\frac{3}{2} x^{2}+y=2 .
$$

Implement a Newton-Lagrange minimization algorithm for this problem in the following way:

- Implement several functions which return the function values, the first derivatives and the second derivatives of f and g at a given point (x, y).
- Implement Newton's root finding algorithm to detect the zeroes of the derivative of the Lagrangian $\nabla \mathcal{L}$ where $\mathcal{L}(x, y, \lambda):=f(x, y)+\lambda(g(x, y)-2)$ since these are potential minimizers. The algorithm should stop when the right hand side in the Newton iteration has an ℓ_{2} norm smaller than 10^{-15}. You should implement this algorithm on your own and not take a ready-to-use algorithm from a numerical library.
- For the solution of the upcoming linear equation system you may use a solver from a numerical standard library (e.g. gsl_linalg_LU_solve from the gsl [http: //www.gnu.org/software/gsl/]) or your own linear equation system solver.
- Use starting values $x=5000, y=-3000$ and $\lambda=400$. What point does the algorithm converge to? How many iterations does it need? Plot the ℓ_{2} norm of the right hand side vector in the Newton algorithm as a function of the current iteration number in a semilogarithmic plot (e.g. with gnuplot).

