Numerical Simulation

Summer Semester 2015
Lecturer: Prof. Dr. André Uschmajew
Assistent: Bastian Bohn
universitätbonn

Excercise sheet 6.

Theoretical exercise 1. (Generic elliptic PDEs [7 points])
Let Ω be a bounded d-dimensional Lipschitz domain where the boundary is the disjoint union $\Gamma:=\partial \Omega=\Gamma_{0} \cup \Gamma_{1}$. Let $c_{0} \in L_{\infty}(\Omega), \alpha \in L_{\infty}\left(\Gamma_{1}\right)$ fulfill $c_{0} \geq 0$ a.e. in Ω and $\alpha \geq 0$ a.e. on Γ_{1}. Assume that one of the following conditions holds:
(i) $\left|\Gamma_{0}\right|>0$,
(ii) $\Gamma_{1}=\Gamma$ and $\int_{\Omega} c_{0}^{2}(x) \mathrm{d} x+\int_{\Gamma} \alpha^{2} \mathrm{ds}(x)>0$.

Let furthermore $f \in L_{2}(\Omega)$ and $g \in L_{2}\left(\Gamma_{1}\right)$ and consider the following problem

$$
\begin{aligned}
\mathcal{A} u+c_{0} u & =f & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma_{0} \\
\partial_{\nu_{\mathcal{A}}} u+\alpha u & =g & & \text { on } \Gamma_{1},
\end{aligned}
$$

where $u \in V:=\left\{u \in H^{1}(\Omega)|u|_{\Gamma_{0}}=0\right\}$. The divergence operator \mathcal{A} is defined by $\mathcal{A} u:=-\operatorname{div}(A \operatorname{grad}(u))$ for a symmetric matrix A whose entries are $L_{\infty}(\Omega)$ functions. Let $\gamma_{0}>0$ be such that

$$
y^{T} A y \geq \gamma_{0}\|y\|_{\ell_{2}}^{2} \quad \forall y \in \mathbb{R}^{d}
$$

The conormal is defined via $\nu_{\mathcal{A}}:=A \nu$ where ν is the outer normal on Γ_{1}.
Compute the weak formulation of the above PDE and show that the Lax-Milgram Lemma can be applied, i.e. show that there exists exactly one solution $u^{*} \in V$ which solves the PDE and there exists a constant $c>0$ such that

$$
\left\|u^{*}\right\|_{H^{1}(\Omega)} \leq c\left(\|f\|_{L_{2}(\Omega)}+\|g\|_{L_{2}\left(\Gamma_{1}\right)}\right) .
$$

Theoretical exercise 2. (Dual optimization for quadratic problems [5 points])
Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite, $b \in \mathbb{R}^{n}, d \in \mathbb{R}^{m}$ and let $C \in \mathbb{R}^{m \times n}$ have rank $m \leq n$. Consider the quadratic minimization problem

$$
\frac{1}{2} u^{T} A u+b^{T} u \rightarrow \min !_{u \in \mathbb{R}^{n}} \quad \text { s.t. } C u-d \leq 0
$$

where the inequality has to be understood componentwise. Assume that there exists a $u \in \mathbb{R}^{n}$ such that $C u-d \leq 0$. Let $L: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ be the corresponding Lagrangian. Prove that the dual maximization problem

$$
G(\lambda):=\inf _{u \in \mathbb{R}^{n}} L(u, \lambda) \rightarrow \max !_{\lambda \in[0, \infty)^{m}}
$$

has a unique solution λ^{*} and compute a closed form of $G(\lambda)$.

Theoretical exercise 3. (Bang-Bang optimality conditions [6 points])
Let Ω be a bounded Lipschitz domain with boundary Γ and let $y_{\Omega}, e_{\Omega} \in L_{2}(\Omega)$ and $e_{\Gamma} \in L_{2}(\Gamma)$. Assume that there exists $y_{0} \in H^{2}(\Omega)$ such that the trace fulfills $\tau\left(y_{0}\right)=e_{\Gamma}$. Determine the optimality conditions of the control problem

$$
\min _{y \in H^{2}(\Omega)} \int_{\Omega}\left(y(x)-y_{\Omega}(x)\right)^{2} \mathrm{~d} x \quad \text { s.t. }-\Delta y=u+e_{\Omega},\left.y\right|_{\Gamma}=e_{\Gamma} \quad \text { and }-1 \leq u(x) \leq 1 \text { a.e., }
$$

i.e. verify that Theorem 1.25 is applicable and compute the adjoint operator S^{*} to get a direct variational inequality for the optimal control u.

