

Numerical Simulation

Summer Semester 2015 Lecturer: Prof. Dr. André Uschmajew Assistent: Bastian Bohn

Excercise sheet 6.

Closing date **02.06.2015**.

Theoretical exercise 1. (Generic elliptic PDEs [7 points])

Let Ω be a bounded *d*-dimensional Lipschitz domain where the boundary is the disjoint union $\Gamma := \partial \Omega = \Gamma_0 \cup \Gamma_1$. Let $c_0 \in L_{\infty}(\Omega), \alpha \in L_{\infty}(\Gamma_1)$ fulfill $c_0 \ge 0$ a.e. in Ω and $\alpha \ge 0$ a.e. on Γ_1 . Assume that one of the following conditions holds:

- (i) $|\Gamma_0| > 0$,
- (ii) $\Gamma_1 = \Gamma$ and $\int_{\Omega} c_0^2(x) dx + \int_{\Gamma} \alpha^2 ds(x) > 0$.

Let furthermore $f \in L_2(\Omega)$ and $g \in L_2(\Gamma_1)$ and consider the following problem

$$\begin{aligned} \mathcal{A}u + c_0 u &= f & \text{in } \Omega \\ u &= 0 & \text{on } \Gamma_0 \\ \partial_{\nu_{\mathcal{A}}} u + \alpha u &= g & \text{on } \Gamma_1, \end{aligned}$$

where $u \in V := \{u \in H^1(\Omega) \mid u|_{\Gamma_0} = 0\}$. The divergence operator \mathcal{A} is defined by $\mathcal{A}u := -\operatorname{div}(\operatorname{Agrad}(u))$ for a symmetric matrix A whose entries are $L_{\infty}(\Omega)$ functions. Let $\gamma_0 > 0$ be such that

$$y^T A y \ge \gamma_0 \|y\|_{\ell_2}^2 \quad \forall y \in \mathbb{R}^d$$

The conormal is defined via $\nu_{\mathcal{A}} := A\nu$ where ν is the outer normal on Γ_1 .

Compute the weak formulation of the above PDE and show that the Lax-Milgram Lemma can be applied, i.e. show that there exists exactly one solution $u^* \in V$ which solves the PDE and there exists a constant c > 0 such that

$$||u^*||_{H^1(\Omega)} \le c \left(||f||_{L_2(\Omega)} + ||g||_{L_2(\Gamma_1)} \right)$$

Theoretical exercise 2. (Dual optimization for quadratic problems [5 points])

Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite, $b \in \mathbb{R}^n, d \in \mathbb{R}^m$ and let $C \in \mathbb{R}^{m \times n}$ have rank $m \leq n$. Consider the quadratic minimization problem

$$\frac{1}{2}u^T A u + b^T u \to \min!_{u \in \mathbb{R}^n} \quad \text{s.t. } C u - d \le 0,$$

where the inequality has to be understood componentwise. Assume that there exists a $u \in \mathbb{R}^n$ such that $Cu - d \leq 0$. Let $L : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ be the corresponding Lagrangian. Prove that the dual maximization problem

$$G(\lambda):=\inf_{u\in\mathbb{R}^n}L(u,\lambda)\to\max!_{\lambda\in[0,\infty)^m}$$

has a unique solution λ^* and compute a closed form of $G(\lambda)$.

Theoretical exercise 3. (Bang-Bang optimality conditions [6 points])

Let Ω be a bounded Lipschitz domain with boundary Γ and let $y_{\Omega}, e_{\Omega} \in L_2(\Omega)$ and $e_{\Gamma} \in L_2(\Gamma)$. Assume that there exists $y_0 \in H^2(\Omega)$ such that the trace fulfills $\tau(y_0) = e_{\Gamma}$. Determine the optimality conditions of the control problem

$$\min_{y \in H^2(\Omega)} \int_{\Omega} (y(x) - y_{\Omega}(x))^2 \mathrm{d}x \quad \text{s.t.} \quad -\Delta y = u + e_{\Omega}, \ y|_{\Gamma} = e_{\Gamma} \text{ and } -1 \le u(x) \le 1 \text{ a.e.},$$

i.e. verify that Theorem 1.25 is applicable and compute the adjoint operator S^* to get a direct variational inequality for the optimal control u.