Wissenschaftliches Rechnen II

(Scientific Computing II)
Sommersemester 2015
universitätbonn
Prof. Dr. Daniel Peterseim Dr. Dietmar Gallistl

Exercise 1. (product rule)
Let $u, \partial_{j} u \in L_{q, \text { loc }}(\Omega)$ and $v, \partial_{j} v \in L_{q^{\prime}, \text { loc }}(\Omega)$ for $1<q<\infty$ with $\frac{1}{q}+\frac{1}{q^{\prime}}=1$. Prove the product rule

$$
\partial_{j}(u v)=\left(\partial_{j} u\right) v+u \partial_{j}(v) .
$$

Exercise 2. (trace identity and inequality)
Let $T:=\operatorname{conv}(\{P\} \cup E) \subseteq \mathbb{R}^{2}$ be a triangle with edge E and opposite vertex P.
(a) Prove for any $f \in W^{1,1}(T)$ the trace inequality

$$
f_{E} f d s=f_{T} f d x+\frac{1}{2} f_{T} \nabla f(x) \cdot(x-P) d x .
$$

(b) Let $f \in H^{1}(T)$ and $h:=\sup _{x \in E}|P-x|$. Prove the trace inequality

$$
\|f\|_{L^{2}(E)}^{2} \leq \frac{|E|}{|T|}\|f\|_{L^{2}(T)}\left(\|f\|_{L^{2}(T)}+h\|\nabla f\|_{L^{2}(T)}\right)
$$

(c) Let $f \in H^{1}(T)$. Prove that there exists a constant $C>0$ independent of $f,|E|,|T|$ such that

$$
\|f\|_{L^{2}(E)} \leq C\left(h^{-1 / 2}\|f\|_{L^{2}(T)}+h^{1 / 2}\|\nabla f\|_{L^{2}(T)}\right) .
$$

Exercise 3. (Sobolev embedding $H^{2}(T) \hookrightarrow C^{0,1 / 2}(T)$ on a triangle)
Let $T \subseteq \mathbb{R}^{2}$ be a triangle and $v \in H^{2}(T)$.
(a) Consider a sub-triangle $t:=\operatorname{conv}\{A, B, C\}$ with $E:=\operatorname{conv}\{A, B\}$ and with tangent vector τ. Apply the trace inequality to $\left.f\right|_{E}:=\nabla v \cdot \tau$ and prove that

$$
|v(B)-v(A)| \leq|E|^{1 / 2} \varrho^{-1 / 2} 2\left(1+\operatorname{diam}(t)^{2}\right)^{1 / 2}\|v\|_{H^{2}(t)}
$$

for $\varrho:=2|t| /|E|$.
(b) For any two points A and B in T there exists $C \in T$ such that (with $E:=\operatorname{conv}\{A, B\}$ and $t:=\operatorname{conv}\{A, B, C\}), \varrho^{-1}$ is uniformly bounded by some constant $C(T)$ that depends only on T, but not on A, B, or t.
(c) Conclude that v is Hölder continuous with exponent $1 / 2$.

Exercise 4. (nodal interpolation not L^{2} or H^{1} stable)
For a triangle $T \subseteq \mathbb{R}^{2}$, prove that there is no constant C such that the nodal P_{1} interpolation I satisfies

$$
\begin{aligned}
\|I u\|_{L^{2}(T)} & \leq C\|u\|_{L^{2}(T)} \text { for all } u \in H^{2}(T) \\
\text { or }\|\nabla I u\|_{L^{2}(T)} & \leq C\|\nabla u\|_{L^{2}(T)} \text { for all } u \in H^{2}(T) .
\end{aligned}
$$

Exercise 5. (maximal angle condition)
Prove that the maximal angle condition is necessary for the interpolation error estimate

$$
\exists C \text { independent of } h_{T} \text { such that } \forall u \in H^{2}(T):|u-I u|_{H^{1}(T)} \leq C h_{T}|u|_{H^{2}(T)}
$$

