Wissenschaftliches Rechnen II
 (Scientific Computing II)

Sommersemester 2015
universitätbonn
Prof. Dr. Daniel Peterseim
Dr. Dietmar Gallistl
Sheet 10

Exercise 34. (Standard FEMs are unstable for Stokes)
Let $\Omega=(0,1)^{2}$. Prove that the following discretizations of the Stokes equations lead to unstable saddle-point problems (prove that the discrete LBB condition is violated).
(a) $V_{h}:=\left[P_{0}^{1,0}\left(\mathcal{T}_{h}\right)\right]^{2}$ and $M_{h}:=P^{0,-1}\left(\mathcal{T}_{h}\right) \cap L_{0}^{2}(\Omega)$ on the criss triangulation \mathcal{T}_{h}.

Hint: Use a dimension argument. The criss triangulation is

(b) $V_{h}:=\left[Q_{0}^{1,0}\left(\mathcal{T}_{h}\right)\right]^{2}$ und $M_{h}:=P^{0,-1}\left(\mathcal{T}_{h}\right) \cap L_{0}^{2}(\Omega)$ for a uniform partition \mathcal{T}_{h} of Ω in squares. Here

$$
Q_{0}^{1,0}\left(\mathcal{T}_{h}\right):=\left\{v \in H_{0}^{1}(\Omega)\left|\forall T_{h} \in \mathcal{T} \exists(a, b, c, d) \in \mathbb{R}^{4}: v\right|_{T}(x, y)=a+b x+c y+d x y\right\}
$$

denotes the space of bilinear finite elements.
Hint: Find $q_{h} \in M_{h}$ with $\int_{\Omega} q_{h} \operatorname{div} v_{h} d x=0$ for all $v_{h} \in V_{h}$.

Exercise 35. (Discrete LBB-condition for Crouzeix-Raviart FEM)
Let \mathcal{T}_{h} be a regular triangulation of the bounded Lipschitz domain $\Omega \subseteq \mathbb{R}^{d}$. Define the interpolation operator $I_{\mathrm{CR}}: H_{0}^{1}(\Omega) \rightarrow \mathrm{CR}_{0}^{1}\left(\mathcal{T}_{h}\right)$ by the condition

$$
\forall v \in H_{0}^{1}(\Omega) \forall F \in \mathcal{F}_{h} \quad\left(I_{\mathrm{CR}} v\right)(\operatorname{mid}(F))=f_{F} v d s
$$

where \mathcal{F}_{h} denotes the set of $(d-1)$-dimensional hyperfaces (edges in 2D, faces in 3D).
(a) Prove that I_{CR} is well-defined and that

$$
\forall v \in H_{0}^{1}(\Omega) \forall F \in \mathcal{F}_{h} \quad \int_{F}\left(v-I_{\mathrm{CR}} v\right) d s=0
$$

(b) Prove that

$$
\forall v \in H_{0}^{1}(\Omega) \forall T \in \mathcal{T}_{h} \quad \int_{T} \nabla I_{\mathrm{CR}} v d x=\int_{T} \nabla v d x
$$

(c) Let $M_{h}:=P^{0,-1}\left(\mathcal{T}_{h}\right) \cap L_{0}^{2}(\Omega)$. Prove that there exists a constant $\beta>0$ independent of h such that

$$
\beta \leq \inf _{q_{h} \in M_{h} \backslash\{0\}} \sup _{v_{h} \in\left[\mathrm{CR}_{0}^{1}\left(\mathcal{T}_{h}\right)\right]^{d} \backslash\{0\}} \sum_{T \in \mathcal{T}_{h}} \frac{\int_{T}\left(\operatorname{div} v_{h}\right) q_{h} d x}{\left\|D_{\mathrm{NC}} v_{h}\right\|_{L^{2}(\Omega)}\left\|q_{h}\right\|_{L^{2}(\Omega)}} .
$$

Here, $\left\|D_{\mathrm{NC}} v_{h}\right\|_{L^{2}(\Omega)}:=\sqrt{\sum_{T \in \mathcal{T}_{h}}\left\|D v_{h}\right\|_{L^{2}(T)}^{2}}$ denotes the norm of the piecewise derivative of v_{h}.

Hint: Prove (c) by using the continuous LBB condition for the Stokes equations and (b).

Exercise 36. (Euler's formulae)
Let \mathcal{T} be a regular triangulation of the simply-connected bounded domain $\Omega \subseteq \mathbb{R}^{2}$ with vertices \mathcal{N}, edges \mathcal{E} and interior edges $\mathcal{E}(\Omega)$. Prove that

$$
\# \mathcal{N}+\# \mathcal{T}=1+\# \mathcal{E}
$$

and

$$
2 \# \mathcal{T}+1=\# \mathcal{N}+\# \mathcal{E}(\Omega)
$$

(\# A denotes the cardinality of a set A).

Exercise 37. (Basis of piecewise divergence-free Crouzeix-Raviart functions)
Let \mathcal{T}_{h} be a regular triangulation of the bounded Lipschitz domain $\Omega \subseteq \mathbb{R}^{2}$. The space Z_{CR} of piecewise divergence-free Crouzeix-Raviart functions with boundary conditions is defined as

$$
Z_{\mathrm{CR}}:=\left\{v_{\mathrm{CR}} \in\left[\mathrm{CR}_{0}^{1}\left(\mathcal{T}_{h}\right)\right]^{2}\left|\forall T \in \mathcal{T}_{h} \operatorname{div} v_{\mathrm{CR}}\right|_{T}=0\right\} .
$$

Find a basis of Z_{CR}. Compare the result with Exercise 33.
Hint: Find suitable linear independent functions and use a dimension argument (Euler formulae from Exercise 36). You may assume that Ω is simply-connected.

