Wissenschaftliches Rechnen II
 (Scientific Computing II)

Sommersemester 2015
universitätbonn
Prof. Dr. Daniel Peterseim
Dr. Dietmar Gallistl
Sheet 11

Exercise 38. (local matrices of the MINI finite element)
Denote by $\lambda_{1}, \lambda_{2}, \lambda_{3}$ the three nodal P_{1} basis functions on a triangle T and define the cubic bubble function $b_{T}:=\lambda_{1} \lambda_{2} \lambda_{3}$. Define the local basis functions of the velocity part of the MINI finite element by
$\psi_{1}=\binom{\lambda_{1}}{0}, \psi_{2}=\binom{\lambda_{2}}{0}, \psi_{3}=\binom{\lambda_{3}}{0}, \psi_{4}=\binom{0}{\lambda_{1}}, \psi_{5}=\binom{0}{\lambda_{2}}, \psi_{6}=\binom{0}{\lambda_{3}}, \psi_{7}=\binom{b_{T}}{0}, \psi_{8}=\binom{0}{b_{T}}$.
The local basis functions for the pressure component are $\lambda_{1}, \lambda_{2}, \lambda_{3}$. The local matrices then read as

$$
A_{T}=\left[\int_{T} D \psi_{j}: D \psi_{k} d x\right]_{j, k=1, \ldots, 8} \quad \text { and } \quad B_{T}=\left[-\int_{T} \lambda_{j} \operatorname{div} \psi_{k} d x\right]_{\substack{j=1, \ldots, 3 \\ k=1, \ldots, 8}}
$$

(a) Prove that A_{T} has the following block structure

$$
A_{T}=\left[\begin{array}{ccc}
S & 0 & 0 \\
0 & S & 0 \\
0 & 0 & R
\end{array}\right]
$$

for

$$
S=\left[\int_{T} \nabla \lambda_{j} \cdot \nabla \lambda_{k} d x\right]_{j, k=1,2,3} \quad \text { and } \quad R=\frac{\operatorname{meas}(T)}{180} \sum_{j=1}^{3}\left|\nabla \lambda_{j}\right|^{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

(b) Prove that B_{T} has the following block structure

$$
B_{T}=\operatorname{meas}(T)\left[\begin{array}{l|l}
L & \\
L & G \\
L &
\end{array}\right]
$$

for

$$
L=-\frac{1}{3}\left(\begin{array}{llllll}
\partial_{x} \lambda_{1} & \partial_{x} \lambda_{2} & \partial_{x} \lambda_{3} & \partial_{y} \lambda_{1} & \partial_{y} \lambda_{2} & \partial_{y} \lambda_{3}
\end{array}\right) \quad \text { and } \quad G=\frac{1}{60}\left[\begin{array}{lll}
\partial_{x} \lambda_{1} & \partial_{y} \lambda_{1} \\
\partial_{x} \lambda_{2} & \partial_{y} \lambda_{2} \\
\partial_{x} \lambda_{3} & \partial_{y} \lambda_{3}
\end{array}\right] .
$$

Exercise 39. (global system matrix of the MINI finite element)
Let $N_{N}=\operatorname{card}(\mathcal{N}(\Omega))$ denote the number of interior vertices and $N_{T}=\operatorname{card}(\mathcal{T})$ denote the number of triangles in the triangulation \mathcal{T} of the 2 D domain Ω. With the nodal basis functions $\left(\lambda_{z}\right)_{z \in \mathcal{N}}$ define the following basis functions $\psi_{1}, \ldots, \psi_{2 N_{N}+2 N_{T}}$ for the velocity by

$$
\begin{gathered}
\left(\psi_{1}, \ldots, \psi_{N_{N}}\right)=\left[\binom{\lambda_{z}}{0}\right]_{z \in \mathcal{N}(\Omega)}, \quad\left(\psi_{N_{N}+1}, \ldots, \psi_{2 N_{N}}\right)=\left[\binom{0}{\lambda_{z}}\right]_{z \in \mathcal{N}(\Omega)}, \\
\left(\psi_{2 N_{N}+1}, \ldots, \psi_{2 N_{N}+N_{T}}\right)=\left[\binom{b_{T}}{0}\right]_{T \in \mathcal{T}}, \quad\left(\psi_{2 N_{N}+N_{T}+1}, \ldots, \psi_{2 N_{N}+2 N_{T}}\right)=\left[\binom{0}{b_{T}}\right]_{T \in \mathcal{T}} .
\end{gathered}
$$

(for the definition of b_{T} see Exercise 38) and for the pressure component define

$$
\left(q_{1}, \ldots, q_{N_{N}}\right)=\left[\lambda_{z}\right]_{z \in \mathcal{N}(\Omega)} .
$$

The global matrices then read as

$$
A=\left[\int_{\Omega} D \psi_{j}: D \psi_{k} d x\right]_{j, k=1, \ldots, 2\left(N_{N}+N_{T}\right)} \quad \text { and } \quad B=\left[-\int_{\Omega} q_{j} \operatorname{div} \psi_{k} d x\right]_{\substack{k=1, \ldots, 2\left(N_{N}+N_{T}\right)}}
$$

(a) Prove that the global system matrix M of the MINI element has the block structure

$$
M=\left[\begin{array}{cc}
A & B^{T} \\
B & 0
\end{array}\right]
$$

so that the discrete equation reads as

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & 0
\end{array}\right]\left[\begin{array}{l}
u_{h} \\
p_{h}
\end{array}\right]=\left[\begin{array}{c}
F \\
0
\end{array}\right] .
$$

(b) Prove that the matrix M has a nontrivial kernel.

Hint: Consider globally constant pressure modes.
(c) Include the constraint $\int_{\Omega} p_{h} d x=0$ in the global system by using a Lagrange multiplier.

Exercise 40. (backward facing step)
Download the Mini element software from the course webpage. An example is given in the file colliding_flow.m. Use the Mini element to simulate the flow over a backward facing step. Print the computed velocity and pressure and present the plots in the tutorial session. The parameters are:

- Domain: $\Omega=((-2,8) \times(-1,1)) \backslash([-2,0] \times[-1,0])$ (see Figure 1)
- Forcing term: $f=0$,
- Dirichlet data: $u_{D}(x, y)= \begin{cases}(0,0) & \text { for }-2<x<8 \\ (-y(y-1) / 10,0) & \text { for } x=-2 \\ (-(y+1)(y-1) / 80,0) & \text { for } x=8 .\end{cases}$

Figure 1: The backward facing step.

Exercise 41. (conforming companion operators)
The design of the conforming companions to any $v_{h} \in \mathrm{CR}_{0}^{1}$ begins with the map $J_{1}: \mathrm{CR}_{0}^{1}(\mathcal{T}) \rightarrow$ $P_{0}^{1,0}(\mathcal{T})$ defined by

$$
J_{1} v_{h}:=\left.\sum_{z \in \mathcal{N}(\Omega)} \operatorname{card}(\mathcal{T}(z))^{-1} \sum_{T \in \mathcal{T}(z)} v_{h}\right|_{T}(z) \lambda_{z},
$$

where λ_{z} denotes the conforming nodal basis function. For a given interior edge $E:=\operatorname{conv}\{a, b\} \in$ $\mathcal{E}(\Omega)$ let $b_{E}:=6 \lambda_{a} \lambda_{b}$ denote the edge bubble function. Then the operator $J_{2}: \operatorname{CR}_{0}^{1}((T)) \rightarrow P_{0}^{2,0}(\mathcal{T})$ is given by

$$
J_{2} v_{h}:=J_{1} v_{h}+\sum_{E \in \mathcal{E}(\Omega)}\left(f_{E}\left(v_{h}-J_{1} v_{h}\right) d s\right) b_{E}
$$

For any triangle $T \in \mathcal{T}$ with $T=\operatorname{conv}\{a, b, c\}$ define the element bubble function $b_{T}:=60 \lambda_{a} \lambda_{b} \lambda_{c}$. The operator $J_{3}: \mathrm{CR}_{0}^{1}((T)) \rightarrow P_{0}^{3,0}(\mathcal{T})$ is given by

$$
J_{3} v_{h}:=J_{2} v_{h}+\sum_{T \in \mathcal{T}}\left(f_{T}\left(v_{h}-J_{2} v_{h}\right) d x\right) b_{T}
$$

Prove that the operators $J_{k}: \mathrm{CR}_{0}^{1}(\mathcal{T}) \rightarrow P_{0}^{k, 0}(\mathcal{T}), k=1,2,3$, defined above satisfy
(a) the conservation properties

$$
\begin{aligned}
\int_{T} \nabla\left(v_{h}-J_{k} v_{h}\right) d x=0 & \text { for all } T \in \mathcal{T} \text { and } k=2,3 \\
\int_{T}\left(v_{h}-J_{3} v_{h}\right) d x=0 & \text { for all } T \in \mathcal{T}
\end{aligned}
$$

(b) the approximation and stability properties for $k=1,2,3$

$$
\left\|h_{\mathcal{T}}^{-1}\left(v_{h}-J_{k} v_{h}\right)\right\| \approx\left\|\nabla_{\mathrm{NC}}\left(v_{h}-J_{k} v_{h}\right)\right\| \approx \min _{\varphi \in H_{0}^{1}(\Omega)}\left\|\nabla_{\mathrm{NC}}\left(v_{h}-\varphi\right)\right\| .
$$

