

Wissenschaftliches Rechnen II (Scientific Computing II)

Sommersemester 2015 Prof. Dr. Daniel Peterseim Dr. Dietmar Gallistl

Sheet 12

due date: 06. Juli 2015

Exercise 42. (condition numbers)

Let \mathcal{T} be a quasi-uniform triangulation of the domain $\Omega \subseteq \mathbb{R}^d$, that is, there are constants $0 < c \leq C < \infty$ such that

$$c \le \frac{\max_{T \in \mathcal{T}} \operatorname{diam}(T)}{\min_{T \in \mathcal{T}} \operatorname{diam}(T)} \le C.$$

Let $h = \max_{T \in \mathcal{T}} \operatorname{diam}(T)$. Let $(\lambda_z)_{z \in \mathcal{N}(\Omega)}$ denote the nodal basis of $P_0^{1,0}(\mathcal{T})$ and recall the mass and stiffness matrices

$$M = \left[\int_{\Omega} \lambda_y \lambda_z \, dx \right]_{y, z \in \mathcal{N}(\Omega)} \quad \text{and} \quad S = \left[\int_{\Omega} \nabla \lambda_y \cdot \nabla \lambda_z \, dx \right]_{y, z \in \mathcal{N}(\Omega)}$$

- (a) Denote by μ_{\min} and μ_{\max} the smallest and the largest eigenvalue of M. Prove that there are mesh-size independent, positive constants ρ_1 , ρ_2 such that $\rho_1 h^d \leq \mu_{\min} \leq \mu_{\max} \leq \rho_2 h^d$.
- (b) Prove that the spectral condition number $\kappa_2(M) := \sqrt{\mu_{\text{max}}/\mu_{\text{min}}}$ is independent of h.
- (c) Denote by σ_{\min} and σ_{\max} the smallest and and the largest eigenvalue of S. Prove that there are mesh-size independent, positive constants η_1 , η_2 such that $\eta_1 h^d \leq \sigma_{\min} \leq \sigma_{\max} \leq \eta_2 h^{d-2}$. Prove that these estimates are sharp.
- (d) Prove that the spectral condition number $\kappa_2(S) := \sqrt{\sigma_{\max}/\sigma_{\min}}$ can be bounded from above by $\mathcal{O}(h^{-2})$. Prove that this estimate is sharp.

Hint: 1. Recall the Rayleigh quotient characterization of minimal/maximal eigenvalues. 2. Use the Friedrichs inequality and inverse estimates in (c).

Exercise 43. (Leapfrog for the 2D wave equation)

Write a program that numerically solves the wave equation

$$u_{tt} = \Delta u \text{ in } \Omega \times (0,T), \quad u(\cdot,t) = 0 \text{ on } \partial \Omega, \quad u(0,\cdot) = u_0 \text{ on } \partial \Omega, \quad u_t(0,\cdot) = u_0 \text{ on } \partial \Omega$$

for $\Omega \subseteq \mathbb{R}^2$. Use the P_1 finite element method for the spacial discretization and the Leapfrog method for the time integration.

Hint: The system matrices (mass, stiffness) for the space discretization can be downloaded on the course website (e.g. Exercise Sheet 7).

Exercise 44. (simulation of 2D wave equation)

Use the software from Exercise 43 to solve the wave equation on $\Omega = (0,1)^2$ with the following initial data

(a) • $u_0(x_1, x_2) = \sin(2\pi x_1)\sin(2\pi x_2)$ • $u_1(x_1, x_2) = 0$

(b) •
$$u_0(x_1, x_2) = x_1 \sin(8\pi x_1) \sin(3\pi x_2)$$

• $u_1(x_1, x_2) = \exp(1 + x_2^2)$

Produce movies of you computed solution by using the program getMovie4Wave(T,U,speed,filename) (download from the course website), where T is the triangulation and the matrix U contains the solution for each time step in its columns. (The parameters speed and filename are optional.)

Exercise 45. (mass lumping)

Let \mathcal{T} denote a triangulation of $\Omega \subseteq \mathbb{R}^2$ with nodal basis function $(\lambda_z)_{z \in \mathcal{N}}$. Denote by I the nodal P_1 interpolation operator. Define the matrix

$$L = \left[\int_{\Omega} I_h(\lambda_y \lambda_z) \, dx \right]_{y, z \in \mathcal{N}}.$$

- (a) Prove that L is diagonal.
- (b) Recall the mass matrix $M = \left[\int_{\Omega} \lambda_y \lambda_z \, dx\right]_{y,z \in \mathcal{N}}$ and prove that

$$L_{jj} = \sum_{k=1}^{\operatorname{card}(\mathcal{N})} M_{jk},$$

that is the diagonal entries of L are the sums of the rows of M.

 ${\it Remark:}$ This is why L is referred to as "lumped" mass matrix.

(c) Run the numerical experiments of Exercise 44 with the lumped version of the mass matrix and compare the results.