Wissenschaftliches Rechnen II
 (Scientific Computing II)

Sommersemester 2015
Prof. Dr. Daniel Peterseim
Dr. Dietmar Gallistl
Sheet 2

Exercise 6. (Banach-Babuška-Nečas theorem)
Let V be a Banach space and let W be a reflexive Banach space and let $a \in \mathcal{L}(V \times W)$ satisfy

$$
\begin{array}{r}
0<\alpha=\inf _{v \in V \backslash\{0\}} \sup _{w \in W \backslash\{0\}} \frac{a(v, w)}{\|v\|_{V}\|w\|_{W}}, \\
\forall w \in W \backslash\{0\} \exists v \in V a(v, w) \neq 0 . \tag{BBN2}
\end{array}
$$

Define furthermore $A_{1} \in \mathcal{L}\left(V, W^{\prime}\right)$ and $A_{2} \in \mathcal{L}\left(W, V^{\prime}\right)$ by $A_{1}(v):=a(v, \cdot)$ and $A_{2}(w):=a(\cdot, w)$.
(a) Prove that the range of A_{1} is closed in W^{\prime}.
(b) Prove that the range of A_{1} equals W^{\prime}.
(c) Prove that A_{1} is an isomorphism and $\left\|A_{1}^{-1} F\right\|_{V} \leq \alpha^{-1}\|F\|_{W^{\prime}}$ for any $F \in W^{\prime}$.
(d) Prove that A_{2} is an isomorphism with $\left\|A_{1}^{-1}\right\|_{\mathcal{L}\left(W^{\prime} ; V\right)}=\alpha^{-1}=\left\|A_{2}^{-1}\right\|_{\mathcal{L}\left(V^{\prime} ; W\right)}$.
(e) Prove that

$$
\inf _{w \in W \backslash\{0\}} \sup _{v \in V \backslash\{0\}} \frac{a(v, w)}{\|v\|_{V}\|w\|_{W}}=\alpha .
$$

Exercise 7. (energy functional)
Let H be a Hilbert space and $a: H \times H \rightarrow \mathbb{R}$ a symmetric bilinear form that induces the norm $\|\cdot\|_{a}^{2}=a(\cdot, \cdot)$ on H. Given $b \in H^{\prime}$, define the quadratic functional

$$
E(v)=\frac{1}{2} a(v, v)-b(v) \quad \text { for } v \in H
$$

Prove that $u \in H$ satisfies $a(u, v)=b(v)$ for all $v \in H$ if and only if $u \in H$ is the unique minimizer of E over H.

Exercise 8. (error computation)
Given $F \in H^{-1}(\Omega)$, define the energy functional

$$
E(v):=\frac{1}{2}\|\nabla u\|_{L^{2}(\Omega)}^{2}-F(v) \quad \text { for } v \in H_{0}^{1}(\Omega)
$$

Prove that the error of the conforming finite element method for the Poisson problem with righthand side F satisfies

$$
\left\|\nabla\left(u-u_{h}\right)\right\|_{L^{2}(\Omega)}^{2}=2\left(E\left(u_{h}\right)-E(u)\right)=\|\nabla u\|_{L^{2}(\Omega)}^{2}-\left\|\nabla u_{h}\right\|_{L^{2}(\Omega)}^{2} .
$$

Exercise 9. (element matrices)
Let T be a triangle with with set of vertices $\mathcal{N}(T)$. Given $y \in \mathcal{N}(T)$, denote by $\lambda_{y} \in P_{1}(T)$ the affine function defined by

$$
\lambda_{y}(z)=\delta_{y z} \quad \text { for all } z \in \mathcal{N}(T)
$$

Compute the following 3×3 matrices

$$
\begin{aligned}
M_{T} & :=\left(\int_{T} \lambda_{y} \lambda_{z} d x\right)_{(y, z) \in(\mathcal{N}(T))^{2}} & & \text { (local mass matrix) } \\
C_{T} & :=\left(\int_{T} \lambda_{y}\left(\beta \cdot \nabla \lambda_{z}\right) d x\right)_{(y, z) \in(\mathcal{N}(T))^{2}} & & \text { (local convection matrix with given } \beta \in \mathbb{R}^{2} \text {) } \\
S_{T} & :=\left(\int_{T} \nabla \lambda_{y} \cdot \nabla \lambda_{z} d x\right)_{(y, z) \in(\mathcal{N}(T))^{2}} & & \text { (local stiffness matrix) }
\end{aligned}
$$

on the reference triangle $T:=\operatorname{conv}\{(0,0),(1,0),(0,1)\}$.

