Wissenschaftliches Rechnen II
 (Scientific Computing II)

Sommersemester 2015
universitätbonn
Prof. Dr. Daniel Peterseim
Dr. Dietmar Gallistl
Sheet 3

On 23. April: Preliminary session on FEM implementation (during the lecture)
On 27. April: Lab session in the computer lab 6.012
Download the software archive P1FEM.zip from the lecture website. The software can be used with Matlab or Octave.

Data structures. A regular triangulation is described by the structure array T containing

- T.coords $=$ matrix with 2 columns whose rows describe the coordinates of the vertices
- T.elems = matrix with 3 columns whose rows describe the triangles (counterclockwise)
- T.dirichlet $=$ matrix with 2 columns. The rows contain the endpoints of the edges of the Dirichlet boundary
- T. neumann $=$ matrix with 2 columns. The rows contain the endpoints of the edges of the Neumann boundary

Example. (square with pure Dirichlet boundary)

T.coords $=\left(\begin{array}{cc}0 & 0 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0.5 & 0.5\end{array}\right)$, T.elems $=\left(\begin{array}{ccc}1 & 2 & 5 \\ 2 & 3 & 5 \\ 3 & 4 & 5 \\ 4 & 1 & 5\end{array}\right)$, T.dirichlet $=\left(\begin{array}{ll}1 & 2 \\ 2 & 3 \\ 3 & 4 \\ 4 & 1\end{array}\right)$, T.neumann $=[]$

Files.

- refine. $\mathrm{m}=\mathrm{T}=$ refine (T) creates a uniform refinement of the triangulation T
- P1FEM.m $=$ the P_{1} finite element method for the Poisson equation in 2D with Dirichlet boundary
- exampleSquare.m $=$ example on the unit square

Exercise 10. (L-shaped domain)
(a) Write the data structure T for a triangulation of the L-shaped domain $\Omega:=(-1,1)^{2} \backslash([0,1] \times$ $[-1,0])$.
(b) Plot the convergence history for $-\Delta u=1$ on the L-shaped domain (cf. Exercise 8; the exact solution satisfies $\|\nabla u\|^{2}=0.2140750232$). Compare the convergence rate with the output of exampleSquare.m for the unit square.

Exercise 11. (convection-diffusion equation)
(a) Implement the P_{1} FEM for the convection-diffusion equation $-\varepsilon \Delta u+\beta \cdot \nabla u=f$ (extend the existing program P1FEM.m).
(b) Consider the unit square $\Omega=(0,1)^{2}$ with homogeneous Dirichlet boundary conditions and the right-hand side f according to the exact solution

$$
u(x)=\left(\frac{e^{r_{1}\left(x_{1}-1\right)}-e^{r_{2}\left(x_{1}-1\right)}}{e^{-r_{1}}-e^{-r_{2}}}+x_{1}-1\right) \sin \left(\pi x_{2}\right)
$$

with

$$
r_{1}=\frac{-1+\sqrt{1+4 \varepsilon^{2} \pi^{2}}}{-2 \varepsilon} \quad \text { and } \quad r_{2}=\frac{-1-\sqrt{1+4 \varepsilon^{2} \pi^{2}}}{-2 \varepsilon} .
$$

Run numerical computations for the following parameters
(i) $\varepsilon=0.1$ and $\beta=(1,0)^{T}$.
(ii) $\varepsilon=0.001$ and $\beta=(1,0)^{T}$.

