

Wissenschaftliches Rechnen II (Scientific Computing II)

Sommersemester 2015 Prof. Dr. Daniel Peterseim Dr. Dietmar Gallistl

Sheet 4

due date: 4. Mai 2015

Exercise 12. (discontinuous Sobolev functions) Consider the unit sphere $\Omega := \{x \in \mathbb{R}^3 : |x| < 1\}$ and the function $u(x) := \log |x|$ for $x \in \Omega$. Prove

- (a) $u \in L^2(\Omega)$, but $u \notin C^0(\Omega)$.
- (b) $u \in H^1(\Omega)$.

Exercise 13. (Laplacian in polar coordinates) Prove that in polar coordinates as the Laplacian reads as

$$\Delta u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \varphi^2}.$$

Exercise 14. (sector domain)

Let $\omega \in (0, 2\pi)$ and $\alpha \in (0, 1)$. In polar coordinates (r, φ) the sector domain reads

$$\Omega_{\omega} := \{ (r, \varphi) \in (0, 1) \times (0, 2\pi) : \phi < \omega \}.$$

- (a) Prove that the function $u(r, \varphi) := r^{\alpha} \sin(\varphi/\omega)$ is harmonic, i.e., $\Delta u = 0$.
- (b) Prove that $u \in H^2(\Omega_{\omega})$ if and only if $\omega \leq \pi$.

Exercise 15. (integration by parts)

Let $\Omega \subseteq \mathbb{R}^2$ be a bounded domain with C^2 boundary. Prove for all $u \in H^1_0(\Omega) \cap H^2(\Omega)$ that

$$\int_{\Omega} |D^2 u|^2 \, dx = \int_{\Omega} |\Delta u|^2 \, dx + \int_{\partial \Omega} \left(\frac{\partial u}{\partial \nu}\right)^2 \left(\nu \cdot \frac{\partial \tau}{\partial s}\right) \, ds$$

where ν and τ are the unit normal and tangent vectors and $\partial/\partial s$ denotes the derivative with respect to the arclength.

Exercise 16. (regularity for the Laplacian on convex domains)

Let $\Omega \subseteq \mathbb{R}^2$ be a convex bounded domain with C^2 boundary and let $u \in H^1_0(\Omega)$ solve $-\Delta u = f$ for given $f \in L^2(\Omega)$. Prove the regularity estimate

$$||D^2u||_{L^2(\Omega)} \le ||f||_{L^2(\Omega)}.$$

Hint: Use Exercise 11.

Exercise 17. (projections in Hilbert spaces) Let H be a Hilbert space with inner product (\cdot, \cdot) and norm $\|\cdot\| = (\cdot, \cdot)^{1/2}$ and let $P \in \mathcal{L}(H; H)$ be a nontrivial oblique projection, that is $0 \neq P \neq \text{id}$ and $P \circ P = P$. Prove that

$$||P||_{\mathcal{L}(H;H)} = ||1 - P||_{\mathcal{L}(H;H)}$$