Wissenschaftliches Rechnen II
 (Scientific Computing II)

Sommersemester 2015
Prof. Dr. Daniel Peterseim
Dr. Dietmar Gallistl
Sheet 4

Exercise 12. (discontinuous Sobolev functions)
Consider the unit sphere $\Omega:=\left\{x \in \mathbb{R}^{3}:|x|<1\right\}$ and the function $u(x):=\log |x|$ for $x \in \Omega$. Prove
(a) $u \in L^{2}(\Omega)$, but $u \notin C^{0}(\Omega)$.
(b) $u \in H^{1}(\Omega)$.

Exercise 13. (Laplacian in polar coordinates)
Prove that in polar coordinates as the Laplacian reads as

$$
\Delta u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \varphi^{2}} .
$$

Exercise 14. (sector domain)
Let $\omega \in(0,2 \pi)$ and $\alpha \in(0,1)$. In polar coordinates (r, φ) the sector domain reads

$$
\Omega_{\omega}:=\{(r, \varphi) \in(0,1) \times(0,2 \pi): \phi<\omega\} .
$$

(a) Prove that the function $u(r, \varphi):=r^{\alpha} \sin (\varphi / \omega)$ is harmonic, i.e., $\Delta u=0$.
(b) Prove that $u \in H^{2}\left(\Omega_{\omega}\right)$ if and only if $\omega \leq \pi$.

Exercise 15. (integration by parts)
Let $\Omega \subseteq \mathbb{R}^{2}$ be a bounded domain with C^{2} boundary. Prove for all $u \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ that

$$
\int_{\Omega}\left|D^{2} u\right|^{2} d x=\int_{\Omega}|\Delta u|^{2} d x+\int_{\partial \Omega}\left(\frac{\partial u}{\partial \nu}\right)^{2}\left(\nu \cdot \frac{\partial \tau}{\partial s}\right) d s
$$

where ν and τ are the unit normal and tangent vectors and $\partial / \partial s$ denotes the derivative with respect to the arclength.

Exercise 16. (regularity for the Laplacian on convex domains)
Let $\Omega \subseteq \mathbb{R}^{2}$ be a convex bounded domain with C^{2} boundary and let $u \in H_{0}^{1}(\Omega)$ solve $-\Delta u=f$ for given $f \in L^{2}(\Omega)$. Prove the regularity estimate

$$
\left\|D^{2} u\right\|_{L^{2}(\Omega)} \leq\|f\|_{L^{2}(\Omega)} .
$$

Hint: Use Exercise 11.

Exercise 17. (projections in Hilbert spaces)
Let H be a Hilbert space with inner product (\cdot, \cdot) and norm $\|\cdot\|=(\cdot, \cdot)^{1 / 2}$ and let $P \in \mathcal{L}(H ; H)$ be a nontrivial oblique projection, that is $0 \neq P \neq \mathrm{id}$ and $P \circ P=P$. Prove that

$$
\|P\|_{\mathcal{L}(H ; H)}=\|1-P\|_{\mathcal{L}(H ; H)} .
$$

