

Sheet 5

Wissenschaftliches Rechnen II (Scientific Computing II)

Sommersemester 2015 Prof. Dr. Daniel Peterseim Dr. Dietmar Gallistl

due date: 11. Mai 2015

Exercise 18. (Robin boundary conditions)

Let \mathcal{T} be a regular triangulation of the open bounded domain $\Omega \subseteq \mathbb{R}^2$. The Poisson equation with Robin boundary conditions

$$-\Delta u = f \quad \text{in } \Omega \qquad u + \frac{\partial u}{\partial \nu} = 0 \tag{1}$$

is stated in its week form as: Seek $u \in H^1(\Omega)$ such that

$$(\nabla u, \nabla v)_{L^2(\Omega)} + (u, v)_{L^2(\partial\Omega)} = (f, v)_{L^2(\Omega)} \quad \text{for all } v \in H^1(\Omega).$$
(2)

- (a) Prove that the left-hand side of (2) is coercive on $H^1(\Omega)$ and that (2) is well-posed. Prove furthermore that solutions to (2) solve (1) in a weak sense.
- (b) Given the real interval [0, h] for h > 0 and the affine functions λ_1^{1D} , λ_2^{1D} defined by the nodal values

$$\lambda_1^{1D}(0) = \lambda_2^{1D}(h) = 1$$
 and $\lambda_1^{1D}(h) = \lambda_2^{1D}(0) = 0$

i.e., the nodal basis of $P^1([0,h])$, compute the (local) 1D mass matrix M_{1D} defined by

$$M_{1\mathrm{D}} = \left(\int_0^h \lambda_j^{1\mathrm{D}}(x)\lambda_k^{1\mathrm{D}}(x)\,dx\right)_{j,k=1,2}$$

(c) Write a Matlab or Octave program that assembles the boundary mass matrix B defined by

$$B_{jk} = \int_{\partial\Omega} \lambda_j \lambda_k \, ds$$

for the nodal basis $(\lambda_j)_j$ of $P^{1,0}(\mathcal{T})$.

Hint: Note that most entries of B are zero. Implement a loop over the boundary edges.

- (d) Implement the finite element method for (2) in Matlab or Octave by modifying the code of Exercise Sheet 3.
- (e) Compute finite element approximations to (2) for $f \equiv 1$. Print a surface plot of the computed solution.

Exercise 19. (continuity of conforming FEM functions)

Let \mathcal{T} be a regular triangulation of $\Omega \subseteq \mathbb{R}^d$ und let $v \in P^{k,-1}(\mathcal{T})$ (for $k \in \mathbb{N}$) be a piecewise polynomial function. For each interior (d-1) dimensional hyper-face F (edges for d = 2 or faces for d = 3) with adjacent simplices T_+ and T_- (i.e., $F = T_+ \cap T_-$), the jump across F is defined by $[v]_F := v|_{T_+} - v|_{T_-}$.

(a) Prove that

 $v \in H^1(\Omega) \iff [v]_F = 0 \quad \text{for all interior hyper-faces } F$

(b) The space $H(\operatorname{div}, \Omega)$ is defined by

$$H(\operatorname{div},\Omega) := \left\{ v \in L^2(\Omega; \mathbb{R}^2) \mid \exists g \in L^2(\Omega) \text{ such that for all } \varphi \in \mathcal{D}(\Omega) \\ \int_{\Omega} v \cdot \nabla \varphi \, dx = -\int_{\Omega} g\varphi \, dx \right\}$$

Prove that

 $v \in H(\operatorname{div}, \Omega) \iff [v \cdot \nu_F]_F = 0$ for all interior hyper-faces F

where ν_F is some normal vector of F.

Exercise 20. (smallest singular value = inf-sup constant)

Let $X := \mathbb{R}^m$ and $Y := \mathbb{R}^n$ be finite dimensional and $b : X \times Y \to \mathbb{R}$ be a bilinear form. Given orthonormal bases (ξ_1, \ldots, ξ_m) and (η_1, \ldots, η_n) of X and Y, respectively, the matrix representation of b reads as $B = (B_{jk})_{\substack{j=1,\ldots,m \\ k=1,\ldots,n}} \in \mathbb{R}^{m \times n}$ with

$$B_{jk} := b(\xi_j, \eta_k) \quad \text{for all } (j,k) \in \{1, \dots, m\} \times \{1, \dots, n\}.$$

Prove that the inf-sup constant

$$\beta := \inf_{x \in X \setminus \{0\}} \sup_{y \in Y \setminus \{0\}} \frac{b(x,y)}{\|x\| \, \|y\|}$$

equals the smallest singular value of B.

Reminder: For any real $m \times n$ matrix M there exist matrices $U \in O(m)$ und $V \in O(n)$ and a diagonal matrix $\Sigma \in \mathbb{R}^{m \times n}$ with non-negative entries such that $M = U\Sigma V$. The positive entries of Σ are called the singular values of M.