Wissenschaftliches Rechnen II
 (Scientific Computing II)

Sommersemester 2015
universitätbonn
Prof. Dr. Daniel Peterseim
Dr. Dietmar Gallistl
Sheet 6

Exercise 21. (FEM in 1D)
(a) Prove that in one space dimension the approximation of the equation $u^{\prime \prime}(x)=1$ (on the interval $(0,1)$ with homogeneous Dirichlet boundary conditions) with the P_{1} finite element method results in the nodal interpolation, that is $u_{h}=I_{h} u$.
(b) Convince yourself that this property cannot be valid in higher space dimensions (e.g., by comparing with Exercise 4).

Exercise 22. (oscillatory coefficient)
Consider the unit interval $\Omega=(0,1)$ and the second-order boundary value problem

$$
\begin{equation*}
-\frac{d}{d x}\left(A_{\varepsilon}(x) \frac{d}{d x} u_{\varepsilon}(x)\right)=1 \quad \text { in } \Omega \quad \text { and } \quad u_{\varepsilon}(0)=u_{\varepsilon}(1)=0 \tag{1}
\end{equation*}
$$

for the coefficient

$$
A_{\varepsilon}(x):=\left(2+\cos \left(2 \pi \frac{x}{\varepsilon}\right)\right)^{-1}
$$

The weak formulation for this specific right-hand side seeks $u_{\varepsilon} \in H_{0}^{1}(\Omega)$ such that

$$
\int_{0}^{1} A_{\varepsilon}(x) u_{\varepsilon}^{\prime}(x) v^{\prime}(x) d x=\int_{0}^{1} v(x) d x \quad \text { for all } v \in H_{0}^{1}(\Omega)
$$

(a) Verify that the solution to (1) is given by

$$
u_{\varepsilon}(x)=x-x^{2}-\varepsilon\left(\frac{1}{4 \pi} \sin \left(2 \pi \frac{x}{\varepsilon}\right)-\frac{x}{2 \pi} \sin \left(2 \pi \frac{x}{\varepsilon}\right)-\frac{\varepsilon}{4 \pi^{2}} \cos \left(2 \pi \frac{x}{\varepsilon}\right)+\frac{\varepsilon}{4 \pi^{2}}\right) .
$$

(b) Let $N \in \mathbb{N}$ and $\varepsilon=1 / N$. Consider the finite element mesh

$$
\mathcal{T}=\{[k h,(k+1) h]: k=0,1, \ldots N\}
$$

with mesh-size $h=\varepsilon$. The finite element method seeks $u_{h} \in V_{h}$ such that

$$
\int_{0}^{1} A_{\varepsilon}(x) u_{\varepsilon, h}^{\prime}(x) v_{h}^{\prime}(x) d x=\int_{0}^{1} v_{h}(x) d x \quad \text { for all } v_{h} \in V_{h}
$$

Prove that $u_{\varepsilon, h}$ coincides with the nodal interpolation of the function

$$
w(x)=-\frac{\sqrt{3}}{2}\left(x^{2}-x\right)
$$

Hint: Use Exercise 21. You may also use that $\int_{0}^{\varepsilon} A_{\varepsilon}(x) d x=\varepsilon / \sqrt{3}$.
(c) Plot (with Matlab/Octave or by hand) the functions $u_{\varepsilon}, u_{\varepsilon, h}$ as well as the nodal interpolation of u_{ε} for $h=\varepsilon=0.1,0.01$. Does $u_{\varepsilon, h}$ provide a meaningful approximation to u_{ε} in an L^{2} sense? What happens for coarser mesh sizes $h=k \varepsilon(k \in \mathbb{N})$?
(d) Give a (crude) error estimate for small values of ε that proves that the error in the L^{2} norm $\left\|u_{\varepsilon}-u_{\varepsilon, h}\right\|_{L^{2}(\Omega)}$ is not better than order $\mathcal{O}(1)$ when $h=\varepsilon$.
(e) Compute a guaranteed upper bound for the error $\left\|u_{\varepsilon}-u_{\varepsilon, h}\right\|_{H^{1}(\Omega)}$ (e.g., by using Céa's lemma). What can you conclude for small values of $h \ll \varepsilon$?

Exercise 23. (jumping coefficient I)
Consider the unit interval $\Omega=(0,1)$ and the second-order boundary value problem

$$
-\frac{d}{d x}\left(A(x) \frac{d}{d x} u(x)\right)=1 \quad \text { in } \Omega \quad \text { and } \quad u(0)=u(1)=0
$$

for the coefficient (with $\gamma>1$)

$$
A(x):= \begin{cases}1 & \text { if } 0 \leq x \leq 0.5 \\ \gamma & \text { if } 0.5<x \leq 1\end{cases}
$$

(a) Compute u analytically and plot its graph (for $\gamma=10$).
(b) Prove that u and $A u^{\prime}$ are continuous, but u^{\prime} is discontinuous. Discuss why the "kink" in the solution is aligned with the discontinuity of A.

Exercise 24. (jumping coefficient II)
Let $\Omega \subseteq \mathbb{R}^{2}$ and let $A \in L^{\infty}(\Omega)$ with uniform bounds $\underline{\alpha}, \bar{\alpha}$ such that

$$
0<\underline{\alpha} \leq A(x) \leq \bar{\alpha}<\infty \quad \text { a.e. in } \Omega .
$$

Consider the PDE

$$
-\operatorname{div}(A \nabla u)=f \quad \text { in }\left.\Omega \quad u\right|_{\partial \Omega}=0
$$

(a) Implement the finite element method for this problem in the case of a piecewise constant $A \in P^{0,-1}(\mathcal{T})$ by modifying the software from Exercise Sheet 3.
(b) Compute the finite element solution for the unit square domain $\Omega=(0,1)^{2}$ and the coefficient function

$$
A(x):= \begin{cases}1 & \text { if } x \in\left[0, \frac{1}{2}\right] \times\left[0, \frac{1}{2}\right] \\ 20 & \text { else }\end{cases}
$$

Plot the computed solution. Can one recognize where the coefficient A is discontinuous?

