Wissenschaftliches Rechnen II
 (Scientific Computing II)

Sommersemester 2015
universitätbonn
Prof. Dr. Daniel Peterseim
Dr. Dietmar Gallistl
Sheet 9

Exercise 30. (Quasi-interpolation)
Let \mathcal{T}_{h} be a shape-regular triangulation of $\Omega \subseteq \mathbb{R}^{d}$. We define the operator $R_{h}: H_{0}^{1}(\Omega) \rightarrow P_{0}^{1,0}\left(\mathcal{T}_{h}\right)$ via

$$
R_{h} v=\sum_{z \in \mathcal{N}_{h}(\Omega)} f_{\omega_{z}} v d x \lambda_{z} .
$$

Here, $\mathcal{N}_{h}(\Omega)$ is the set of interior vertices, $\left\{\lambda_{z}\right\}_{z \in \mathcal{N}(\Omega)}$ is the nodal basis, and $\omega_{z}:=\cup\left\{K \in \mathcal{T}_{h}\right.$: $z \in K\}$ denotes the nodal patch of a vertex $z \in \mathcal{N}_{h}(\Omega)$. Prove for any $T \in \mathcal{T}_{h}$ and any $v \in H_{0}^{1}(\Omega)$ that

$$
\operatorname{diam}(T)^{-1}\left\|v-R_{h} v\right\|_{L^{2}(T)}+\left\|\nabla R_{h} v\right\|_{L^{2}(T)} \leq C\|\nabla v\|_{L^{2}\left(\omega_{T}\right)}
$$

where the element patch ω_{T} of T is $\omega_{T}:=\cup\left\{K \in \mathcal{T}_{h}: K \cap T \neq \emptyset\right\}$.

Exercise 31. (inf-sup condition)
Let V and M be Hilbert spaces and let $b: V \times M \rightarrow \mathbb{R}$ be a continuous bilinear form satisfying

$$
0<\beta \leq \inf _{\mu \in M \backslash\{0\}} \sup _{v \in V \backslash\{0\}} b(v, \mu)
$$

Define the set

$$
Z=\{v \in V: b(v, \mu)=0 \text { for all } \mu \in M\}
$$

with V-orthogonal complement Z^{\perp} and polar set $Z^{\circ}=\left\{F \in V^{\prime}:\left.F\right|_{Z}=0\right\}$. Define the operators $B: Z^{\perp} \rightarrow M^{\prime}$ and $B^{\prime}: M \rightarrow Z^{\circ}$ via

$$
B(v)=b(v, \cdot) \quad B^{\prime}(\mu)=b(\cdot, \mu) \quad \text { for any } v \in Z^{\perp} \text { and } \mu \in M
$$

(a) Check that B and B^{\prime} are well-defined.
(b) Prove that B is an isomorphism and $\left\|B^{-1}\right\|_{\mathcal{L}\left(M^{\prime}, Z^{\perp}\right)} \leq \beta^{-1}$
(c) Prove that B^{\prime} is an isomorphism and $\left\|\left(B^{\prime}\right)^{-1}\right\|_{\mathcal{L}\left(Z^{\circ}, M\right)} \leq \beta^{-1}$

Hint: Closed range theorem.

Exercise 32. (Brezzi splitting is necessary)
Let V and M be Hilbert spaces with continuous bilinear forms $a: V \times V \rightarrow \mathbb{R}$ and $b: V \times M \rightarrow \mathbb{R}$. Assume that for any $F \in V^{\prime}$ and $G \in M^{\prime}$ there exists a unique solution (u, λ) to the saddle-point problem

$$
\left.\begin{array}{rl}
a(u, v)+b(v, \lambda) & =F(v) \\
b(u, \mu) & =G(\mu)
\end{array}\right\} \quad \text { for all }(v, \mu) \in V \times M
$$

and that it satisfies $\|u\|_{V}+\|\lambda\|_{M} \leq C\left(\|F\|_{V^{\prime}}+\|G\|_{M^{\prime}}\right)$. Let

$$
Z:=\{v \in V: b(v, \mu)=0 \text { for all } \mu \in M\} .
$$

Prove that there exist constants $\alpha, \beta>0$ such that

$$
\inf _{v \in Z \backslash\{0\}} \sup _{w \in Z \backslash\{0\}} \frac{a(v, w)}{\|v\|_{V}\|w\|_{V}} \geq \quad \alpha \quad \inf _{v \in Z \backslash\{0\}} \sup _{w \in Z \backslash\{0\}} \frac{a(w, v)}{\|v\|_{V}\|w\|_{V}}
$$

and

$$
\inf _{\mu \in M \backslash\{0\}} \sup _{v \in V \backslash\{0\}} \frac{b(v, \mu)}{\|v\|_{V}\|\mu\|_{M}} \geq \beta .
$$

Exercise 33. (Conforming divergence-free functions are trivial)
Let \mathcal{T}_{h} be the criss triangulation of the unit square and let $u_{h} \in P_{0}^{1,0}\left(\mathcal{T}_{h}\right)$ with $\operatorname{div} u_{h}=0$. Prove that $u_{h}=0$.
Hint: The criss triangulation is

