

Wissenschaftliches Rechnen II (Scientific Computing II)

Sommersemester 2015 Prof. Dr. Daniel Peterseim Dr. Dietmar Gallistl

Sheet 9

due date: 15. Juni 2015

Exercise 30. (Quasi-interpolation)

Let \mathcal{T}_h be a shape-regular triangulation of $\Omega \subseteq \mathbb{R}^d$. We define the operator $R_h : H_0^1(\Omega) \to P_0^{1,0}(\mathcal{T}_h)$ via

$$R_h v = \sum_{z \in \mathcal{N}_h(\Omega)} \int_{\omega_z} v \, dx \, \lambda_z.$$

Here, $\mathcal{N}_h(\Omega)$ is the set of interior vertices, $\{\lambda_z\}_{z\in\mathcal{N}(\Omega)}$ is the nodal basis, and $\omega_z := \bigcup \{K \in \mathcal{T}_h : z \in K\}$ denotes the nodal patch of a vertex $z \in \mathcal{N}_h(\Omega)$. Prove for any $T \in \mathcal{T}_h$ and any $v \in H_0^1(\Omega)$ that

$$\operatorname{diam}(T)^{-1} \|v - R_h v\|_{L^2(T)} + \|\nabla R_h v\|_{L^2(T)} \le C \|\nabla v\|_{L^2(\omega_T)}$$

where the element patch ω_T of T is $\omega_T := \bigcup \{K \in \mathcal{T}_h : K \cap T \neq \emptyset \}.$

Exercise 31. *(inf-sup condition)*

Let V and M be Hilbert spaces and let $b: V \times M \to \mathbb{R}$ be a continuous bilinear form satisfying

$$0 < \beta \leq \inf_{\mu \in M \setminus \{0\}} \sup_{v \in V \setminus \{0\}} b(v,\mu).$$

Define the set

$$Z = \{ v \in V : b(v, \mu) = 0 \text{ for all } \mu \in M \}$$

with V-orthogonal complement Z^{\perp} and polar set $Z^{\circ} = \{F \in V' : F|_Z = 0\}$. Define the operators $B: Z^{\perp} \to M'$ and $B': M \to Z^{\circ}$ via

$$B(v) = b(v, \cdot)$$
 $B'(\mu) = b(\cdot, \mu)$ for any $v \in Z^{\perp}$ and $\mu \in M$.

- (a) Check that B and B' are well-defined.
- (b) Prove that B is an isomorphism and $||B^{-1}||_{\mathcal{L}(M',Z^{\perp})} \leq \beta^{-1}$
- (c) Prove that B' is an isomorphism and $||(B')^{-1}||_{\mathcal{L}(Z^{\circ},M)} \leq \beta^{-1}$

Hint: Closed range theorem.

Exercise 32. (Brezzi splitting is necessary)

Let V and M be Hilbert spaces with continuous bilinear forms $a: V \times V \to \mathbb{R}$ and $b: V \times M \to \mathbb{R}$. Assume that for any $F \in V'$ and $G \in M'$ there exists a unique solution (u, λ) to the saddle-point problem

$$\begin{array}{rcl} a(u,v) &+& b(v,\lambda) &=& F(v) \\ b(u,\mu) &&=& G(\mu) \end{array} \right\} \quad \text{for all } (v,\mu) \in V \times M$$

and that it satisfies $||u||_V + ||\lambda||_M \le C(||F||_{V'} + ||G||_{M'})$. Let

$$Z := \{ v \in V : b(v, \mu) = 0 \text{ for all } \mu \in M \}.$$

Prove that there exist constants $\alpha, \beta > 0$ such that

$$\inf_{v \in Z \setminus \{0\}} \sup_{w \in Z \setminus \{0\}} \frac{a(v,w)}{\|v\|_V \|w\|_V} \ge \quad \alpha \quad \leq \inf_{v \in Z \setminus \{0\}} \sup_{w \in Z \setminus \{0\}} \frac{a(w,v)}{\|v\|_V \|w\|_V}$$

and

$$\inf_{\mu \in M \setminus \{0\}} \sup_{v \in V \setminus \{0\}} \frac{b(v,\mu)}{\|v\|_V \|\mu\|_M} \ge \beta.$$

• /

Exercise 33. (Conforming divergence-free functions are trivial) Let \mathcal{T}_h be the criss triangulation of the unit square and let $u_h \in P_0^{1,0}(\mathcal{T}_h)$ with div $u_h = 0$. Prove that $u_h = 0$. Hint: The criss triangulation is

