

Numerical Simulation

Summer semester 2016 Lecturer: Prof. Dr. Ira Neitzel Assistant: Dr. Guanglian Li

Exercise Sheet 5

Closing date May 24, 2016.

Exercise 1. a) Find all solutions to

$$\min_{u \in L^4(0,1)} f(u) := \int_0^1 \left(u^2(x) - 1 \right)^2 \, dx \quad \text{s.t. } |u(x)| \le 1 \text{ a.e. in } (0,1)$$

- b) Find a Banach space where all solutions to a) have the same distance.
- c) Show that the directional derivative f'(u)h exists for all $u, h \in L^4(0, 1)$. Is f Fréchet differentiable in $L^4(0, 1)$? In the Banach space stated in b)?

(10 points)

Exercise 2. Let $\Omega \subset \mathbb{R}^n$, $n \in \{2,3\}$, be a bounded Lipschitz domain, $y_\Omega \in L^2(\Omega)$, $y_\gamma \in L^2(\Gamma)$ and $\beta \in L^{\infty}(\Omega)$ as well as $0 \leq \alpha \in L^{\infty}(\Gamma)$ with $\|\alpha\|_{L^{\infty}(\Gamma)} > 0$ be given functions, and $\lambda, \lambda_{\Omega}, \lambda_{\Gamma} > 0$ be positive real numbers. Moreover, let $u_a, u_b \in L^{\infty}(\Omega)$ with $u_a(x) \leq u_b(x)$ a.e. be given, and define

$$U_{\mathrm{ad}} := \{ u \in L^2(\Omega) \colon u_a(x) \le u(x) \le u_b(x) \quad \text{a.e. in } \Omega \}.$$

State and prove the first order necessary and sufficient optimality conditions for the problem

$$\min_{\substack{(u \in U_{\mathrm{ad}}), y \in H^1(\Omega)}} J(y, u) = \frac{\lambda_\Omega}{2} \|y - y_d\|_{L^2\Omega}^2 + \frac{\lambda_\Gamma}{2} \|y - y_\Gamma\|_{L^2\Gamma}^2 + \lambda \|u\|_{L^2(\Omega)}^2$$
$$-\Delta y = \beta u \quad \text{in } \Omega$$
$$\partial_\nu y + \alpha y = 0 \quad \text{on } \Gamma,$$

where $\partial_{\nu} y$ denotes the outward unit normal of y.

(10 points)

Exercise 3. Let $\Omega \subset \mathbb{R}^3$ be a bounded Lipschitz domain and $e \in L^2(\Omega)$ a given function, and for the control space $U = \mathbb{R}$ let $S \colon U \to L^2(\Omega)$ denote the control-to-state operator for the state equation

$$\begin{array}{rcl} \Delta y &=& u \, e & \mathrm{in} \ \Omega \\ y &=& 0 & \mathrm{on} \ \Gamma. \end{array}$$

Calculate $S^*z \in \mathbb{R}$ for given $z \in L^2(\Omega)$.

(10 points)