

Numerical Simulation

Summer semester 2016 Lecturer: Prof. Dr. Ira Neitzel Assistant: Dr. Guanglian Li

Exercise Sheet 6

Closing date June 7, 2016.

Exercise 1. Let $\Omega = (0, 1)$ and $U = L^2(\Omega)$. Consider

$$f(u) := -\int_{0}^{1} \cos(u(x)) \, dx$$

Prove the following:

- a) f is Gâteaux-differentiable.
- b) f is not twice Fréchet-differentiable in $\bar{u} = 0$ with respect to the L^2 -norm.
- c) f is twice Fréchet-differentiable in \bar{u} with respect to the L^{∞} -norm.

(10 points)

Exercise 2. Consider for a bounded Lipschitz domain $\Omega \subset \mathbb{R}^2$, functions $f, y_\Omega \in L^2(\Omega), u_\Gamma \in L^2(\Gamma)$, as well as $0 \leq \alpha \in L^{\infty}(\Gamma)$ with $\|\alpha\|_{L^{\infty}(\Gamma)} > 0$, and nonnegative real numbers $\lambda_{\Omega}, \lambda_{\Gamma} > 0$ the following optimal control problem:

$$\min_{\substack{(u,y)\in \in (U_{\mathrm{ad}}\times\in H^1(\Omega))}} J(y,u) = \frac{\lambda_\Omega}{2} \|y - y_\Omega\|_{L^2\Omega}^2 + \frac{\lambda_\Gamma}{2} \|u - u_\Gamma\|_{L^2(\Gamma)}^2$$
$$-\Delta y = f \quad \text{in } \Omega$$
$$\partial_\nu y + \alpha y = u \quad \text{on } \Gamma,$$

where $\partial_{\nu} y$ denotes the outward unit normal of y, and as usual U_{ad} is given by

$$U_{\rm ad} := \{ u \in L^2(\Omega) \colon u_a(x) \le u(x) \le u_b(x) \quad \text{a.e. in } \Omega \}$$

with $u_a, u_b \in L^{\infty}(\Omega)$ with $u_a(x) \leq u_b(x)$ a.e.

Construct a test example with known solution, i.e. state precise data for Ω and all appearing functions, parameters, and bounds, as well as the optimal solution triple (\bar{u}, \bar{y}, p) . Verify that the first order optimality conditions are fulfilled.

(15 points)