Numerical Simulation

Summer semester 2016
Lecturer: Prof. Dr. Ira Neitzel
Assistant: Dr. Guanglian Li

Exercise Sheet 7

Exercise 1. Let $\Omega \subset \mathbb{R}^{2}$ be a convex polygonal domain, $u, y_{\Omega} \in L^{2}(\Omega)$ be given functions, and $\lambda>0$ be a positive real number. Moreover, $S: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ denotes the control-to-state operator associated with the following weak formulation

Find $y \in V: \quad(\nabla y, \nabla \varphi)_{L^{2}(\Omega)}+(y, \varphi)_{L^{2}(\Omega)}=(u, \varphi)_{L^{2}(\Omega)} \quad \forall \varphi \in V$,
with $V:=H_{0}^{1}(\Omega)$. Now, consider a shape regular and quasi-uniform triangulation of Ω constituting a nonoverlapping cover of Ω, which we denote by $\mathcal{T}_{h}=\{T\}$. Associated with this triangulation, we introduce the discrete state space

$$
V \supset V_{h}=\left\{v_{h} \in C_{0}(\bar{\Omega}): v_{h_{\mid}} \in \mathcal{P}^{1}(T) \text { for } T \in \mathcal{T}_{h}\right\},
$$

where $\mathcal{P}^{1}(T)$ denotes the space of polynomials of degree up to order one on each triangle T. Let $S_{h}: L^{2}(\Omega) \rightarrow V_{h}$ denote the discrete control-to-state operator associated with the discretized state equation

$$
\text { Find } y_{h} \in V_{h}: \quad\left(\nabla y_{h}, \nabla \varphi_{h}\right)_{L^{2}(\Omega)}+\left(y_{h}, \varphi_{h}\right)_{L^{2}(\Omega)}=\left(u, \varphi_{h}\right)_{L^{2}(\Omega)} \quad \forall \varphi_{h} \in V_{h} .
$$

Last, let us define continuous and discrete objective functions $f, f_{h}: L^{2}(\Omega) \rightarrow \mathbb{R}$, respectively, by

$$
f(u)=\frac{1}{2}\left\|S u-y_{\Omega}\right\|_{L^{2}(\Omega)}^{2}+\frac{\lambda}{2}\|u\|_{L^{2}(\Omega)}^{2}
$$

and

$$
f_{h}(u)=\frac{1}{2}\left\|S_{h} u-y_{\Omega}\right\|_{L^{2}(\Omega)}^{2}+\frac{\lambda}{2}\|u\|_{L^{2}(\Omega)}^{2} .
$$

Prove the following properties:
a) For any $u_{1}, u_{2}, v \in L^{2}(\Omega),\left\|f_{h}^{\prime}\left(u_{1}\right) v-f_{h}^{\prime}\left(u_{2}\right) v\right\| \leq c\left\|u_{1}-u_{2}\right\|_{L^{2}(\Omega)\|v\|_{L^{2}(\Omega)}}$ holds with a constant $c>0$ independent of h.
b) For any $u, v \in L^{2}(\Omega),\left\|f^{\prime}(u) v-f_{h}^{\prime}(u) v\right\| \leq c h^{2}\left(\|u\|_{L^{2}(\Omega)}+\left\|y_{\Omega}\right\|_{L^{2}(\Omega)}\right)\|v\|_{L^{2}(\Omega)}$ holds with a constant $c>0$ independent of h.
c) For any $u, v \in L^{2}(\Omega), f_{h}^{\prime \prime}(u) v^{2} \geq c\|v\|^{2}$ holds with a constant $c>0$ independet of h.
(15 points)

