

# Wissenschaftliches Rechnen II/Scientific Computing II

Sommersemester 2016 Prof. Dr. Jochen Garcke Dipl.-Math. Sebastian Mayer



Exercise sheet 10To be handed in on Thursday, 30.06.2016Principal Component Analysis

## 1 Group exercises

- **G** 1. Let  $\Sigma \in \mathbb{R}^{d \times d}$  be a symmetric matrix with eigenvalues  $\lambda_1 \geq \cdots \geq \lambda_d \geq 0$ .
- a) Let  $u_i \in \mathbb{R}^d$  be the eigenvector corresponding to eigenvalue  $\lambda_i$ . Show that  $\langle u_i, u_j \rangle = 0$  if  $\lambda_i \neq \lambda_j$ .
- b) Show that

$$\max_{\|w\|_2=1} w^T \Sigma w = \lambda_1, \qquad \min_{\|w\|_2=1} w^T \Sigma w = \lambda_d$$

**G 2.** Let  $\lambda_1, \ldots, \lambda_d \in \mathbb{R}$  such that  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d \geq 0$ . Further let  $\alpha_1, \ldots, \alpha_d \in [0, 1]$  such that  $\sum_{i=1}^d \alpha_i = p$ , where  $p \in \mathbb{N}$  and  $p \leq d$ . Show that

$$\sum_{i=1}^d \lambda_i \alpha_i \le \sum_{i=1}^p \lambda_i$$

**G** 3. Let  $y \in \mathbb{R}^d$  be a random variable with  $\mathbb{E}[y] = 0$  and  $\mathbb{E}[yy^T] = \Sigma_y$ . Show that the minimization problem

$$\min_{W \in \mathbb{R}^{d \times p}: W^T W = I_p} \mathbb{E}[\|y - WW^T y\|_2^2]$$

is equivalent to the maximization problem

$$\max_{W \in \mathbb{R}^{d \times p} : W^T W = I_p} \operatorname{tr}(W^T \Sigma_y W)$$

**G** 4. Let  $y^1, \ldots, y^n$  be some data points in  $\mathbb{R}^d$ . Assume that you cannot access the  $y^i$  directly, but only the Euclidean distance matrix  $D = (||y^i - y^j||_2^2)_{i,j=1}^n$ . Compute from D the centering Gram matrix  $G^c = (\langle y^i - \mu, y^j - \mu \rangle)_{i,j=1}^n$ , where  $\mu = n^{-1} \sum_{i=1}^n y^i$ .

### 2 Homework

#### H 1. (Principal components)

5 Let  $y \in \mathbb{R}^d$  be a random variable with  $\mathbb{E}[y] = 0$  and  $\Sigma_y = \mathbb{E}[yy^T]$ . Assume that  $\operatorname{rank}(\Sigma_y) \geq p$  and denote by  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p > 0$  the *p* largest eigenvalues of  $\Sigma_y$ . Prove Theorem 2.3 presented in the lecture, i.e., show that the first *p* principal components of *y* are given by

$$x_i = w_i^T y$$

where  $\{w_i\}_{i=1}^p$  are the orthonormal eigenvectors of  $\Sigma_y$  associated with the eigenvalues  $\lambda_1, \ldots, \lambda_p$ .

**Hint:** Use G1 b) to determine the p principal components step by step.

H 2. (PCA: Greedy vs. global minimization)

- a) A greedy algorithm is an algorithm that tries to solve an optimization problem by making a locally optimal choice at each stage. A solution obtained by a greedy algorithm is called a greedy solution. Argue that the principal components, which you determined in H1, form a greedy solution for the maximitation problem considered in G3.
- b) Let  $\Sigma \in \mathbb{R}^{d \times d}$  be a symmetric matrix with eigenvalue decomposition  $\Sigma = U\Lambda U^T$ . In the lecture it has been stated that

$$\max_{W \in \mathbb{R}^{d \times p}, W^T W = I_p} \operatorname{tr}(W^T \Sigma W)$$

is attained for  $W = UI_{d \times p}$ , where  $I_{d \times p} = (\delta_{ij})_{i=1,\dots,d,j=1,\dots,p}$ . Show that this is indeed true. **Hint:** Use G2.

c) Use b) to conclude the principal components from H1 give the optimal solution for the optimization problem considered in G3.

**Remark:** This fact is remarkable since in general, a greedy algorithm will not find the optimal solution of an optimization problem.

(5 Punkte)

#### **H 3.** (PCA: optimal rank-*p* approximation)

Let  $A \in \mathbb{R}^{n \times d}$  with singular value decomposition  $A = U\Gamma V^T$ . Let  $A^p = U\Gamma^P V^T$ , where  $\Gamma^p$  denotes the matrix obtained from  $\Gamma$  by settings to zero its elements on the diagonal after the *p*th entry.

a) Show that

$$||A - A^p||_F^2 = \sum_{i=p+1}^{\min\{n,d\}} \sigma_i^2,$$

where  $\sigma_i$  denotes the *i*th singular value of A.

b) Show that the solution of

$$\min_{B \in \mathbb{R}^{n \times d}, \operatorname{rank}(B) = p} \|A - B\|_F^2$$

is given by  $B = A^p$ .

(5 Punkte)

#### H 4. (Programming exercise: oddities of high-dimensional data)

In this programming exercise you will experiment with artificial high-dimensional data to observe that distances behave very counterintuitive in high dimensions. See accompanying notebook for the details.

(5 Punkte)