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Application of PCA and MDS

1 Group exercises

G 1. (MDS: embedding of out-of-sample data)

Assume you had training data in the form of a centered Gram matrix Gc =
(〈yi, yj〉)ni,j=1 = Y TY or in the form of a Euclidean distance matrix D = (‖yi− yj‖)ni,j=1

and learned a p-dimensional embedding of the training data using the CMDS algorithm.
Now assume there is a new test point x ∈ Rd, which is different from the yi but stems
from the same data generating source. You cannot observe x directly but only one of
the following sets of features:

a) you either observe inner products xS = Y Tx,

b) or you observe squared Euclidean distances xE = (‖x− yi‖22)ni=1.

Use the components computed by the CMDS algorithm to construct a p-dimensional
embedding x̂ of x from the given feature representation. Give a geometric interpretation
of the constructed embedding x̂. Discuss what properties the training data y1, . . . , yn

must have such that the obtain embedding x̂ is reasonable.

Solution. I give a more detailled explanation, since some of you still struggled with
how to interpret the embeddings generated by MDS/PCA. Let us first recapitulate how
the training data is embedded. Consider the singular value decomposition Y = UΣV T .
We have seen in the lecture that CMDS orthogonaly projects the data Y on the p-
dimensional subspace spanned by the the cólumns of W = UId×p, where W is such that
the sum of squared errors (lengths of orthogonal complements)

‖Y −WW TY ‖2F =

n∑
i=1

‖yi −WW T yi‖22

becomes minimal. The embedding of the training data is given by W TY = Ip×dU
TY =

Ip×dΣV T . Note that Σ = Λ1/2, where Y TY = V ΛV T .

It seems natural to take
x̂ = W Tx = Ip×dU

Tx

as the embedding of the new data point x. How can we justify this? To this end, let us
discuss another geometric interpretation of U and W , which can be considered as the
non-probabilistic version of the PCA-perspective. The training data points y1, . . . , yn lie
in an ellipsoid EY , which is given by the transformation of the the Euclidean unit ball
Bd

2 = {y ∈ Rd : ‖y‖2 ≤ 1} under the matrix Y Y T , EY = Y Y TBd
2 . Now the nonzero

eigenvalues on the diagonal of Λ and the columns of U describe the principal axes of this



ellipsoid. Concretely, the ith column of U contains the unit vector that is aligned with
the ith principal axis of EY and the ith eigenvalues λi gives the length of this principal
axis.

If the given training data are representative for the data generating source, future data
points will also lie in EY (at least, they will be close to it). Hence, if we assume that
the given data y1, . . . , yn is representative, then W Tx = Ip×dU

Tx will provide a good
p-dimensional approximation of x in the sense that

‖x−WW Tx‖2

is of the same magnitude as for the training data.

Now we are only left with the problem how to compute Ip×dU
Tx as we only know Y Tx.

But this is simple: since Y T = V ΣUT we have UT = Σ−1V TY T , such that

x̂ = Ip×dΣ−1V TY Tx.

In case that we only know Euclidean distances, then we use the same double centering
trick which you have seen in the lecture:

〈yi, x〉 = −1

2

‖yi − x‖22 − 1

n

n∑
j=1

‖yi − yj‖22 −
1

n

n∑
j=1

‖x− yj‖22 +
1

n2

n∑
k,l=1

‖yl − yk‖22

 .

I leave it to you to write this in matrix form.

G 2. (Kernel-MDS)

Discuss how MDS could be generalized to distances and inner products which are indu-
ced by a reproducing kernel k : Ω × Ω → R. Concretely, assume that there are points
x1, . . . , xn ∈ Ω of which you observe (k(xi, xj))

n
i,j=1 and you want to construct embed-

dings x̂1, . . . , x̂n ∈ Rp such that

k(xi, xj) ≈ 〈x̂i, x̂j〉.

Solution. Consider the eigenvalue decomposition of K, K = V ΛV T or Λ = V TKV . Let
us denote by V·j the jth column of V . Since k(xi, xj) = 〈k(xi·), k(xj , ·)〉k, we have

λiδij = V T
·i KV·j =

n∑
l1,l2=1

Vl1ik(xl1 , xl2)Vl2j = 〈
n∑

l=1

Vlik(xl, ·),
n∑

l=1

Vljk(xl, ·)〉k,

where δij is as usual the Kronecker delta. Assuming that K has rank n, the functions

fi =
1√
λi

n∑
l=1

Vlik(xl, ·), i = 1, . . . , n

are pairwise orthogonal and ‖fi‖k = 1.

To understand what these functions mean, consider the feature map

Φ : Ω→ H, x 7→ k(x, ·).

Then Φ maps the given data points X = {x1, . . . , xn} into a n-dimensional subspace of
H, namely HX = span{k(xi, ·), i = 1, . . . , n}. Since fi ∈ HX , (fi)

n
i=1 is an orthonormal

basis of HX . As you will show in H1, this ONB has the property that f1, . . . , fp span
the optimal p-dimensional subspace of HX such that

n∑
i=1

‖k(xi, ·)−
p∑

j=1

〈k(xi, ·), fj〉fj‖2k
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becomes miminal. Note that 〈k(xi, ·), fj〉 = fj(xi). Hence, for sufficiently large p,

k(xi, xj) ≈ 〈
p∑

l=1

〈k(xi, ·), fl〉fl,
p∑

l=1

〈k(xj , ·), fl〉fl〉 =

p∑
l=1

fl(xi)fl(xj).

Thus, we choose as embedding

x̂i =

f1(xi)...
fp(xi)

 .
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2 Homework

H 1. (Optimal p-dimensional subspace in a RKHS)

Let k : Ω × Ω → R be a reproducing kernel, H its native Hilbert space and X =
{x1, . . . , xn} ⊂ Ω. Consider the kernel matrix K = (k(xi, xj))

n
i,j=1 and the corresponding

eigenvalue decomposition K = V ΛV T with Λ = diag(λ1, . . . , λm, 0, . . . , 0), where we
assume m ≤ n. Consider for i = 1, . . . ,m the functions

fi :=
1√
λi

n∑
j=1

Vjik(xj , ·) ∈ HX .

a) Show that (fi)
m
i=1 forms an orthonormal basis of HX . Hint: Use that Λ = V TKV .

b) Let p ∈ {1, . . . ,m}. Show that (fi)
p
i=1 is the solution of

min
(gi)ni=1 ONB of HX

n∑
i=1

‖k(xi, ·)−
p∑

j=1

gj(xi)gj‖2k.

Hint: Argue analogously as in Sheet 10, H2 b).

(10 Punkte)

Solution.

a) Orthogonality has already been shown in G2, see the solution there. It only remains
to note that since K has rank m, the subspace HX is m-dimensional and hence the
fi form an ONB.

b) Let us first observe, using the symmetry of k and Λ = V TKV ,

n∑
l=1

fi(xl)fj(xl) =
1√
λiλj

n∑
t1,t2=1

Vt1iVt2j

n∑
l=1

k(xt1 , xl)k(xl, xt2)

=
n∑

t1,t2=1

Vt1iVt2j(K
2)t1t2 = V T

·i K
2V·j =

√
λiλjV

T
·i V·j = λiδij .

Now, using the orthogonality of the gj , we compute

n∑
i=1

‖k(xi, ·)−
p∑

j=1

gj(xi)gj‖2k =

n∑
i=1

k(xi, xi)−
n∑

i=1

p∑
j=1

gj(xi)
2.

This sum becomes minimal when
∑n

i=1

∑p
j=1 gj(xi)

2 is maximal. Since the fi form
an ONB, we have k(xi, ·) =

∑m
l=1 fl(xi)fl, which yields

n∑
i=1

p∑
j=1

gj(xi)
2 =

n∑
i=1

p∑
j=1

|〈gj , k(xi, ·)〉l|2 =

n∑
i=1

p∑
j=1

m∑
l1,l2=1

〈gj , fl1〉k〈gj , fl2〉kfl1(xi)fl2(xi)

Our first observation implies

n∑
i=1

p∑
j=1

m∑
l1,l2=1

〈gj , fl1〉k〈gj , fl2〉kfl1(xi)fl2(xi) =

p∑
j=1

m∑
l=1

|〈gj , fl〉k|2λl

Put αl =
∑p

j=1 |〈gj , fl〉k|2. By Bessel’s inequality, αl ≤ ‖fl‖2k = 1. Since gj =∑m
l=1〈gj , fl〉kfl, we further have

m∑
l=1

αl =
m∑
l=1

p∑
j=1

‖〈gj , fl〉kfl‖2k =

p∑
j=1

‖
m∑
l=1

〈gj , fl〉kfl‖2k = p.
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It remains to apply Sheet 10 G2 to conclude

n∑
i=1

p∑
j=1

gj(xi)
2 =

m∑
l=1

αlλl ≤
p∑

l=1

λl.

We have equality if gi = fi for i = 1, . . . , p.

H 2. (Programming exercise: pedestrian classification)

See accompanying notebook.

(10 Punkte)
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