Wissenschaftliches Rechnen II/Scientific Computing II

Sommersemester 2016
Prof. Dr. Jochen Garcke
Dipl.-Math. Sebastian Mayer
universitätbonn

Exercise sheet 11

To be handed in on Thursday, 07.06.2016

Application of PCA and MDS

1 Group exercises

G 1. (MDS: embedding of out-of-sample data)
Assume you had training data in the form of a centered Gram matrix $G^{c}=$ $\left(\left\langle y^{i}, y^{j}\right\rangle\right)_{i, j=1}^{n}=Y^{T} Y$ or in the form of a Euclidean distance matrix $D=\left(\left\|y^{i}-y^{j}\right\|\right)_{i, j=1}^{n}$ and learned a p-dimensional embedding of the training data using the CMDS algorithm. Now assume there is a new test point $x \in \mathbb{R}^{d}$, which is different from the y^{i} but stems from the same data generating source. You cannot observe x directly but only one of the following sets of features:
a) you either observe inner products $x_{S}=Y^{T} x$,
b) or you observe squared Euclidean distances $x_{E}=\left(\left\|x-y^{i}\right\|_{2}^{2}\right)_{i=1}^{n}$.

Use the components computed by the CMDS algorithm to construct a p-dimensional embedding \hat{x} of x from the given feature representation. Give a geometric interpretation of the constructed embedding \hat{x}. Discuss what properties the training data y^{1}, \ldots, y^{n} must have such that the obtain embedding \hat{x} is reasonable.

G 2. (Kernel-MDS)

Discuss how MDS could be generalized to distances and inner products which are induced by a reproducing kernel $k: \Omega \times \Omega \rightarrow \mathbb{R}$. Concretely, assume that there are points $x_{1}, \ldots, x_{n} \in \Omega$ of which you observe $\left(k\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n}$ and you want to construct embeddings $\hat{x}^{1}, \ldots, \hat{x}^{n} \in \mathbb{R}^{p}$ such that

$$
k\left(x_{i}, x_{j}\right) \approx\left\langle\hat{x}^{i}, \hat{x}^{j}\right\rangle
$$

2 Homework

H 1. (Optimal p-dimensional subspace in a RKHS)
Let $k: \Omega \times \Omega \rightarrow \mathbb{R}$ be a reproducing kernel, \mathcal{H} its native Hilbert space and $X=$ $\left\{x_{1}, \ldots, x_{n}\right\} \subset \Omega$. Consider the kernel matrix $K=\left(k\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n}$ and the corresponding eigenvalue decomposition $K=V \Lambda V^{T}$ with $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m}, 0, \ldots, 0\right)$, where we assume $m \leq n$. Consider for $i=1, \ldots, m$ the functions

$$
f_{i}:=\frac{1}{\sqrt{\lambda_{i}}} \sum_{j=1}^{n} V_{i j} k\left(x^{j}, \cdot\right) \in \mathcal{H}_{X}
$$

a) Show that $\left(f_{i}\right)_{i=1}^{m}$ forms an orthonormal basis of H_{X}. Hint: Use that $\Lambda=V^{T} K V$.
b) Let $p \in\{1, \ldots, m\}$. Show that $\left(f_{i}\right)_{i=1}^{p}$ is the solution of

$$
\left.\min _{i}\right)_{i=1}^{n}{\operatorname{ONB} \text { of } \mathcal{H}_{X}} \sum_{i=1}^{n}\left\|k\left(x_{i}, \cdot\right)-\sum_{j=1}^{p} g_{j}\left(x_{i}\right) g_{j}\right\|_{k}^{2}
$$

Hint: Argue analogously as in Sheet 10, H2 b).

H 2. (Programming exercise: pedestrian classification)
See accompanying notebook.
(10 Punkte)

